
Legal Information
Performance Data Helper DLL
Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express
written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

©1996 Microsoft Corporation. All rights reserved.

Microsoft, MS, Win32, Win32s, Windows, Windows NT, and Visual Basic are registered trademarks of
Microsoft Corporation in the United States and/or other countries.

All other product and company names mentioned herein are the trademarks of their respective owners.

Performance Data Helper
You can use the performance data provided by applications, services, and drivers to determine system
bottlenecks and fine-tune system and application performance. The easiest way to display the
performance data is to use the Performance Monitor application located in the Administrative Tools group.

If you need to collect performance data for your application, the easiest way to do this is to use the
interface provided by the Performance Data Helper (PDH) interface. Applications that need more control
over performance data collection can use the registry interface directly. This is the method that is used by
the functions in PDH.DLL and by the Performance Monitor. It is more efficient for the Performance Monitor
to use the registry interface, because it displays counters grouped by object. If you are retrieving
individual counters, rather than a group of counters from a particular object, it is just as efficient to use the
PDH interface.

This overview discusses both interfaces.

· The PDH Interface
· The Registry Interface

In addition, this overview discusses how to add your own performance counters, by creating an extensible
performance DLL. For more information, see Adding Performance Counters.

The PDH Interface
· Collecting Performance Data.
· Checking PDH Return Values
· Enumerating Process Objects Using PDH

Collecting Performance Data
PDH functions work with queries and counters. A query is a set of performance counters that are grouped
together so that you can collect their data at the same time. A counter is a performance data item stored
in the Windows NT Performance Registry. You can call the PdhBrowseCounters function to display the
following PDH dialog box, which lets you browse the available counters.

{ewc msdncd, EWGraphic, bsd23561 0 /a "SDK.WMF"}

For more information on counters, see Performance Objects and Counters.

A query can contain one or more counters, and a counter can be contained in more than one query. To
use PDH, you must create queries and add counters to them, as shown in the following sections.

· Creating a query
· Collecting data
· Displaying data
· Ending data collection

Creating a Query
To create a new query, call the PdhOpenQuery function. The function returns a handle to the query to be
used in other PDH function calls. You can create multiple queries to be used in your program.

After you create a query, call the PdhAddCounter function to add a counter to the query. Call
PdhAddCounter for each counter to be added to the query. You can use one of the following methods to
determine which counters to use.

· Hard-code the counter name in the call to PdhAddCounter. Use this method if you always monitor
the same counter.

· Read the name from the registry or an initialization file. Use this method if the set of counters you
monitor can change.

· Call the PdhBrowseCounters function to display the PDH browse dialog box. The dialog box allows
the user to browse and select performance counters. The function returns one or more counter path
strings for use in a query. If you add the counter returned by PdhBrowseCounters to a query, you
can use the PdhRemoveCounter function to remove the counter from the query.

Counter Paths
The counter names used by PDH are expressed as counter paths. A counter path uses a collection of
hierarchical elements to describe a counter. In the same way that a file path includes drives, directories,
subdirectories, and file names, a counter path includes machines, objects, instances, and counter names.
The syntax for a counter path is:

\\Machine\PerfObject(ParentInstance/ObjectInstance#InstanceIndex)\Counter

The \\Machine component is optional; it specifies the name of the machine. If you do not supply this
component, PDH uses the local machine name. Therefore, a single path string works on any machine
that supports the counter.

The \PerfObject component is required; it specifies the performance object that contains the performance
counter. These objects are listed in the PDH browse dialog box and in Performance Monitor Add To
Chart dialog box, in the Objects combo box. If this object has a variable list of instances, then you must
also specify an instance string.

The (ParentInstance/ObjectInstance#InstanceIndex) component is only required if the object supports
multiple instances. If the instance supports a variable list of instances, then you must specify an instance
string. The format of the string depends on the object type. If the object has simple instances, then the
format is just the instance name enclosed in parentheses. For example:

(Explorer)

If the instance of this object requires a parent instance name as well, then the parent instance name must
come before the object instance, and be separated by a forward slash character. For example:

(Explorer/0)

If the object has multiple instances that have the same name string, they can be indexed sequentially by
specifying the instance index prefixed by a pound sign. Instance indexes are 0-based, so all instances
have an implicit "0" index. For example:

(Explorer/0#1)

The \Counter component is required; it specifies the performance counter. The counter names are
displayed in the PDH browse dialog box and in the Performance Monitor Add To Chart dialog box, in the

Counters list box. The counters associated with the selected object are displayed.

The following are two common counters in the PDH counter path format:

\Processor(0)\% Processor Time
\System\% Total Processor Time

Collecting Data
After you have created a query and added counters to it, call the PdhCollectQueryData function to
retrieve the current raw data for all counters in the query. Many counters, such as rate counters, require
the following two data samples before a valid data value can be determined.

· Call PdhCollectQueryData before entering the section of code that you are measuring, to provide a
starting value.

· Call PdhCollectQueryData again after exiting the section of code that you are measuring, to get the
ending value.

Displaying Data
The raw value of many counters is not what the user would expect to see. To get the information in the
form described by most counter names, you need to compute the displayable value based on this raw
data. PDH does this for you. For example, the Page Faults/Sec counter simply counts page faults, so if
you view the raw data, you see a running total of page faults. To get the rate implied by the counter name,
page faults per second, you need to call the PdhGetFormattedCounterValue function. In this case, the
function divides the difference between two samples by the time between the samples.

The PdhGetFormattedCounterValue function performs its computations on the most recent sample. If
you need to recalculate and redisplay a sample, you must store the raw data and then call the
PdhCalculateCounterFromRawValue function to perform the calculation on the stored data.

Displaying Statistical Data
Calculating statistical values can be difficult, because many counter values are the result of a change
over time. The PDH provides functions that perform calculations (such as minimum, maximum, and
average values) on the raw counter data for you.

After you have retrieved the raw data for a counter, call the PdhComputeCounterStatistics function to
perform the necessary calculations on the raw data.

Ending Data Collection
After you are finished collecting data for a query, call the PdhCloseQuery function to close the query and
release all allocated system resources. The function closes all counter handles associated with the query.

Checking PDH Return Values
The return value of PDH functions indicates the success or error of the function call, which is distinct from
the status of the counter data. Always check the CStatus member of a counter value returned in the PDH
structures to ensure that the data returned is valid before you use it. If the value of the CStatus member
does not indicate success, do not use the data. The following are the possible status values for counters:

PDH_CSTATUS_NO_MACHINE

PDH was unable to connect to the machine specified in the counter path. If this status is returned
when the counter is being added, the counter is not completely initialized. Each time the query is
updated, PDH retries the connection. When the connection is established, normal data collection
resumes.

PDH_CSTATUS_NO_OBJECT

The specified machine was found, but no matching performance object was found on that machine. If
this status is returned when the counter is being added, the specified counter is not included in the
query. If this status is returned by an active counter, the data for that counter is invalid. Each time the
data is requested, PDH tries to obtain this counter data.

PDH_CSTATUS_NO_INSTANCE

The specified instance was not found in the object. If this status is returned while the counter is being
added to the query, the counter is successfully added to the query, but no data is available until the
specific instance appears and a successful status is returned.

PDH_CSTATUS_NO_COUNTER

The specified counter was not found in the specified object. If this status is returned when the counter
is being added, then the counter is not added to the query. If this status is returned after a data
update, the data for that counter is invalid. Each time the data is requested, PDH tries to obtain this
counter data.

PDH_CSTATUS_INVALID_DATA

The counter was successfully found, but the data returned is not valid. One possible cause for this
value is when the data of a normally increasing counter is less than the previous value. Another
possible cause is a system timer that is not correct.

PDH_CSTATUS_VALID_DATA

The data for the counter was returned successfully, but is unchanged from the last time the counter
was read.

PDH_CSTATUS_NEW_DATA

The data for the counter was returned successfully and is different from the last time the counter was
read. PDH_CSTATUS_NEW_DATA can be returned on a rate counter even if the resulting rate is the
same as the last sample. This is because the raw data value that is used in the determination of this
status value has changed, not the computed rate.

PDH_CSTATUS_NO_COUNTERNAME

No counter path was specified.
PDH_CSTATUS_BAD_COUNTERNAME

The counter path format is incorrect.

Enumerating Process Objects Using PDH
The example in this topic uses the PDH interface to enumerate the process objects on the system.

#ifdef UNICODE
#ifndef _UNICODE
#define _UNICODE 1
#endif
#define tmain wmain
#else
#define tmain main
#endif

// This program only needs the essential windows header files.
#define WIN32_LEAN_AND_MEAN 1

#include <windows.h>
#include <winperf.h>
#include <malloc.h>
#include <stdio.h>
#include <tchar.h>
#include <pdh.h>

int
tmain ()
{
 PDH_STATUS pdhStatus = ERROR_SUCCESS;
 LPTSTR szCounterListBuffer = NULL;
 DWORD dwCounterListSize = 0;
 LPTSTR szInstanceListBuffer = NULL;
 DWORD dwInstanceListSize = 0;
 LPTSTR szThisInstance = NULL;

// Determine the required buffer size for the data.

 pdhStatus = PdhEnumObjectItems (
 NULL, // reserved
 NULL, // local machine
 TEXT("Process"), // object to enumerate
 szCounterListBuffer, // pass in NULL buffers
 &dwCounterListSize, // an 0 length to get
 szInstanceListBuffer, // required size
 &dwInstanceListSize, // of the buffers in chars
 PERF_DETAIL_WIZARD, // counter detail level
 0);

 if (pdhStatus == ERROR_SUCCESS)
 {
 // Allocate the buffers and try the call again.
 szCounterListBuffer = (LPTSTR)malloc (
 (dwCounterListSize * sizeof (TCHAR)));
 szInstanceListBuffer = (LPTSTR)malloc (
 (dwInstanceListSize * sizeof (TCHAR)));

 if ((szCounterListBuffer != NULL) &&
 (szInstanceListBuffer != NULL))
 {
 pdhStatus = PdhEnumObjectItems (
 NULL, // reserved
 NULL, // local machine
 TEXT("Process"), // object to enumerate
 szCounterListBuffer, // pass in NULL buffers
 &dwCounterListSize, // an 0 length to get
 szInstanceListBuffer, // required size
 &dwInstanceListSize, // of the buffers in chars
 PERF_DETAIL_WIZARD, // counter detail level
 0);
 if (pdhStatus == ERROR_SUCCESS)
 {
 _tprintf (TEXT("\nRunning Processes:"));
 // Walk the return instance list.
 for (szThisInstance = szInstanceListBuffer;
 *szThisInstance != 0;
 szThisInstance += lstrlen(szThisInstance) + 1)
 {
 _tprintf (TEXT("\n %s"), szThisInstance);
 }
 }
 }
 else
 {
 _tprintf (TEXT("\nPROCLIST: unable to allocate buffers"));
 }

 if (szCounterListBuffer != NULL)
 free (szCounterListBuffer);

 if (szInstanceListBuffer != NULL)
 free (szInstanceListBuffer);
 }
 else
 {
 _tprintf(TEXT("\nUnable to determine required buffer size."));
 }
 return 0;
}

The Registry Interface
· Performance Objects and Counters
· The HKEY_PERFORMANCE_DATA_KEY
· Performance Data Format
· Navigating the Performance Data
· Retrieving Counter Names and Explanations
· Retrieving Selected Data
· Displaying Object, Instance, and Counter Names
· Adding Performance Counters

Performance Objects and Counters
The performance data is grouped by performance object to which it is related. A performance object
consists of performance counters, which are used to measure various aspects of system, application, or
device performance. For example, the Processor object includes the Processor Time counter to measure
the percentage of time the processor spends executing threads that are not idle and the Interrupts/sec
counter to measure the number of device interrupts the processor receives.

An instance is a unique copy of a particular object type. Not all object types support multiple instances.
For example, a Memory object has only one instance, because a system has one memory. However, the
Processor object supports multiple instances, because a system can have one or more processors.

Most performance counters in Windows NT increment and are never cleared. Therefore, to obtain
performance data, use the following steps.

· Take a snapshot of the relevant performance counters at the beginning of a time interval.
· Take a snapshot of the same performance counters at the end of the time interval.
· Find the difference between the counter values in the snapshots and apply the appropriate calculation

function.

For a list of the system performance objects and performance counters, see Windows NT Performance
Counters.

The HKEY_PERFORMANCE_DATA Key
The performance data is accessed through the registry key HKEY_PEFORMANCE_DATA. Each
software component creates keys for its objects and counters when it is installed and writes counter data
while it is executing. You can access this data as you would access any other registry data, using the
registry functions. However, although you use the registry to collect performance data, the data is not
stored in the registry database. Instead, calling the registry functions with the
HKEY_PEFORMANCE_DATA key causes the system to collect the data from the appropriate system
object managers.

To obtain performance data from the local system, use the RegQueryValueEx function, with the
HKEY_PERFORMANCE_DATA key. The first call opens the key; you do not need to explicitly open the
key first. However, be sure to use the RegCloseKey function to close the handle to the key when you are
finished obtaining performance data. The user cannot install or remove a software component while its
performance data is in use.

To obtain performance data from a remote system, you must use the RegConnectRegistry function, with
the computer name of the remote system and the HKEY_PERFORMANCE_DATA key. This call retrieves
a key representing the performance data for the remote system. To retrieve the data, call
RegQueryValueEx using this key, rather than the HKEY_PERFORMANCE_DATA key.

Performance Data Format
The format of the data retrieved by the RegQueryValueEx function begins with a single header structure,
PERF_DATA_BLOCK. The PERF_DATA_BLOCK structure describes the system and the performance
data. The PERF_DATA_BLOCK structure is followed by a list of object information blocks (one per
object).

PERF_DATA_BLO
CK
Object 1
information
Object 2
information
Object 3
information
…
Object X
information

Basic Performance Data Structure

Each object information block contains a PERF_OBJECT_TYPE structure, which describes the
performance data for the object. The PERF_OBJECT_TYPE structure is followed by a list of
PERF_COUNTER_DEFINITION structures, one for each counter defined for the object. For an object
with only one instance, the list of PERF_COUNTER_DEFINITION structures is followed by a single
PERF_COUNTER_BLOCK structure, followed by the data for each counter.

PERF_OBJECT_TYPE
PERF_COUNTER_DEFINITIO
N 1
PERF_COUNTER_DEFINITIO
N 2
PERF_COUNTER_DEFINITIO
N 3
…
PERF_COUNTER_DEFINITIO
N Y
PERF_COUNTER_BLOCK
Counter 1 data
Counter 2 data
Counter 3 data
…
Counter Y data

Structure of Object Information Block (One Instance)

For an object type that supports multiple instances, the list of PERF_COUNTER_DEFINITION structures
is followed by a list of instance information blocks (one for each instance).

PERF_OBJECT_TYPE
PERF_COUNTER_DEFINITIO
N 1
PERF_COUNTER_DEFINITIO
N 2
PERF_COUNTER_DEFINITIO
N 3

…
PERF_COUNTER_DEFINITIO
N Y
Instance 1 Information
Instance 2 Information
Instance 3 Information
…
Instance Z Information

Structure of Object Information Block (Multiple Instances)

Each instance information block contains a PERF_INSTANCE_DEFINITION structure and a
PERF_COUNTER_BLOCK structure.

PERF_INSTANCE_DEFINIT
ION
Instance name
PERF_COUNTER_BLOCK
Counter Data 1
Counter Data 2
Counter Data 3
…
Counter Data Y

Structure of Instance Information Block

Navigating the Performance Data
The performance data contains information for a variable number of object types, instances per object,
and counters per object type. Therefore, the number and size of blocks in the performance data varies. To
ensure that your application correctly receives the performance data, you must use the offsets included in
the performance structures to navigate through the data. Every offset is a count of bytes relative to the
structure containing it.

For an example that navigates the registry, see Displaying Object, Instance, and Counter Names.

Note The reason the system uses offsets instead of pointers is that pointers are not valid across
process boundaries. The addresses that the process that installs the counters would store would not
be valid for the process that reads the counters.

Retrieving Counter Names and Explanations
Object type names, counter names, object explanations, and counter explanations are not made directly
available in the performance data structures. Instead, the performance data structures contain indices you
can use to locate where the names and explanations for each object and counter can be found. The
ObjectNameTitleIndex and ObjectHelpTitleIndex members of the PERF_OBJECT_TYPE structure
contain the indices to the object name and explanation, respectively. The CounterNameTitleIndex and
CounterHelpTitleIndex members of the PERF_COUNTER_DEFINITION structure contain the indices to
the counter name and explanation, respectively.

To access the names and explanations, read the Counter and Help values in the following registry key.

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT
 \CurrentVersion\Perflib\langid

The langid is the ASCII representation of the 3-digit hexadecimal language identifier. For example, the
U.S. English langid is 009. In a non-English version of Windows NT, counters are stored in both the native
language of the system and in English.

The data is stored as MULTI_SZ strings. This data type consists of a list of Unicode strings, each
terminated with UNICODE_NULL. The last string is followed by an additional UNICODE_NULL. The
strings are listed in pairs. The first string of each pair is the Unicode string of the index, and the second
string is the actual name of the index. The Counter data uses only even-numbered indexes, while the
Help data has odd-numbered indexes. For example, the Counter data contains the following object and
counter name strings.

2 System
4 Memory
6 % Processor Time

The Help data contains the following counter explanations.

3 The System object type includes those counters that...
5 The Memory object type includes those counters that...
7 Processor Time is expressed as a percentage of the...

To retrieve a name or explanation for an object type or counter, given its index, an application should
perform the following steps.

1. If the system is remote, call the RegConnectRegistry function.
2. Use the RegOpenKeyEx function to open the registry key containing the name and explanation text.
3. Use the RegQueryValueEx function, specifying either Counter or Help as the name of the value to

query.
4. Convert the index into Unicode or ASCII, depending on whether your application is Unicode or ASCII.
5. Search the MULTI_SZ data for the appropriate index.
6. Retrieve the string following the matching index. The string contains the name or explanation.

If you are going to be looking up a number of counters, you should build a table for faster and easier
lookup. For an example, see Displaying Object, Instance, and Counter Names.

Retrieving Selected Data
Retrieving the performance data is not without cost to the system, especially in terms of processor and
memory requirements. In cases where your application does not need all the performance data, you can
use the lpszValueName parameter of the RegQueryValueEx function to indicate the amount of
information to retrieve. The following table lists the values you can specify for lpszValueName. Note that
the value strings are case-sensitive, and if a string includes more than one word, your words must be
separated by a space.

Value Description
 Global The function returns all data for counters on

the local computer, except those included in
the Costly category.

nnn xx yyy Each of these is a Unicode string representing
the decimal value for an object name index.
The function only returns data about the
specified object types on the local computer.
For example, if your program were to use "2
4", the System and Memory objects would be
retrieved.
Note that more object types can be returned
than are requested. This occurs when the
requested object type depends on another
object type. For example, processes are
needed to identify threads, so information for
the Process object is also returned when you
request information for the Thread object.

Foreign ssss The string ssss is the name of a foreign
computer, such as a Novell NetWare server or
a UNIX system. If your system is capable of
collecting data from a foreign computer, the
function returns all data for counters on the
foreign computer. Try this approach if the
RegConnectRegistry function fails to connect
to a foreign computer.

Foreign ssss nnn xx
yyy

This format combines Foreign ssss and nnn
xx yyy.

Costly The function returns data for object types
whose data is expensive to collect in terms of
processor time or memory usage. Start a
worker thread if your application needs to
respond to the user during this lengthy data
collection.

Calculations for Raw Counter Data
This section lists the types of performance counters and the calculations that the Performance Monitor
uses to convert the raw data to the information you would expect from the counter name. The counter
types and calculations are defined in WINPERF.H. For the calculations, the following key applies:

Symbol Definition
N Numerator
D Denominator
TB Time base (indicates the units of raw data if not used in

calculation)
B Base count (number of entries)
N0 Oldest or first sample taken (of the numerator in this

case; D0 would be of the denominator)
N1 More recent sample
Nx Most recent sample in calculation array (for average

calculation)

PERF_100NSEC_MULTI_TIMER Timer for when multiple instances are in use, so the result can
exceed 100%. The number of instances is in the next counter.

Element Value
Numerator CounterData

Denominator 100NsTime

Time base 100Ns

Calculation (N1-N0)/(D1-D0)

Average function (Nx-N0)/(Dx-D0)

PERF_100NSEC_MULTI_TIMER_INV The inverse of the timer for multiple instances (when the
object is not in use).

Element Value
Numerator CounterData

Denominator 100NsTime

Time base 100Ns

Calculation (B-((N1-N0)/(D1-D0)))

Average function (B-((Nx-N0)/(Dx-D0)))

PERF_100NSEC_TIMER Timer for when the object is in use.

Element Value
Numerator CounterData

Denominator 100NsTime

Time base 100Ns

Calculation (N1-N0)/(D1-D0)

Average function (Nx-N0)/(Dx-D0)

PERF_100NSEC_TIMER_INV The inverse of the timer (when the object is not in use).

Element Value
Numerator CounterData

Denominator 100NsTime

Time base 100Ns

Calculation (1-((N1-N0)/(D1-D0)))

Average function (1-((Nx-N0)/(Dx-D0)))

PERF_AVERAGE_BASE Used as the denominator in the computation of time or count averages.

Element Value
Numerator N/A

Denominator N/A

Time base N/A

Calculation N/A

Average function N/A

PERF_AVERAGE_BULK A count which usually gives the bytes per operation when divided by the
number of operations.

Element Value
Numerator CounterData

Denominator BaseData

Time base N/A

Calculation (N1-N0)/(D1-D0)

 Average
function

(Nx-N0)/(Dx-D0)

PERF_AVERAGE_TIMER A timer which usually gives time per operation when divided by the
number of operations.

Element Value
Numerator CounterData

Denominator BaseData

Time base PerfFreq

Calculation ((N1-N0)/TB)/(D1-D0)

Average function ((Nx-N0)/TB)/(Dx-D0)

PERF_COUNTER_BULK_COUNT Used to count byte transmission rates.

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (N1-N0)/((D1-D0)/TB)

Average function (Nx-N0)/((Dx-D0)/TB)

PERF_COUNTER_COUNTER Rate of counts. The most common counter.

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (N1-N0)/((D1-D0)/TB)

Average function (Nx-N0)/((Dx-D0)/TB)

PERF_COUNTER_DELTA Difference between two counters.

Element Value
Numerator CounterData

Denominator N/A

Time base N/A

Calculation (N1-N0)

Average function (Nx-N0)/x

PERF_COUNTER_LARGE_DELTA Difference between two counters.

Element Value
Numerator CounterData

Denominator N/A

Time base N/A

Calculation (N1-N0)

Average function (Nx-N0)/x

PERF_COUNTER_LARGE_QUEUELEN_TYPE Average count per time interval.

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (N1-N0)/(D1-D0)

Average function (Nx-N0)/(Dx-D0)

PERF_COUNTER_LARGE_RAWCOUNT Instantaneous counter value.

Element Value
Numerator CounterData

Denominator N/A

Time base N/A

Calculation (N0)

Average function SUM(N)/x

PERF_COUNTER_LARGE_RAWCOUNT_HEX Instantaneous counter value, as a hexadecimal
number.

Element Value
Numerator CounterData

Denominator N/A

Time base N/A

Calculation (N0)

Average function SUM(N)/x

PERF_COUNTER_MULTI_BASE Base for MULTI counters.

Element Value
Numerator N/A

Denominator N/A

Time base N/A

Calculation N/A

Average function N/A

PERF_COUNTER_MULTI_TIMER Timer for when multiple instances are in use, so the result can
exceed 100%. The number of instances is in the next counter.

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (N1-N0)/(D1-D0)

Average function (Nx-N0)/(Dx-D0)

PERF_COUNTER_MULTI_TIMER_INV The inverse of the timer for multiple instances (when the
object is not in use).

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (B-((N1-N0)/(D1-D0)))

Average function (B-((Nx-N0)/(Dx-D0)))

PERF_COUNTER_NODATA There is no data for this counter.

Element Value
Numerator 0
Denominator N/A
Time base N/A
Calculation 0
Average function 0

PERF_COUNTER_QUEUELEN_TYPE Average count per time interval.

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (N1-N0)/(D1-D0)

Average function (Nx-N0)/(Dx-D0)

PERF_COUNTER_RAWCOUNT Instantaneous counter value.

Element Value
Numerator CounterData

Denominator N/A

Time base N/A

Calculation (N0)

Average function SUM(N)/x

PERF_COUNTER_RAWCOUNT_HEX Instantaneous counter value, as a hexadecimal number.

Element Value
Numerator CounterData

Denominator N/A

Time base N/A

Calculation (N0)

Average function SUM(N)/x

PERF_COUNTER_TEXT Indicates the data is not a counter, but is Unicode text.

Element Value
Numerator N/A

Denominator N/A

Time base N/A

Calculation N/A

Average function N/A

PERF_COUNTER_TIMER The most common timer.

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (N1-N0)/(D1-D0)

Average function (Nx-N0)/(Dx-D0)

PERF_COUNTER_TIMER_INV The inverse of the timer (when the object is not in use).

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (1-((N1-N0)/(D1-D0)))

Average function (1-((Nx-N0)/(Dx-D0)))

PERF_ELAPSED_TIME The data is the start time of the item being measured. For display, subtract
the start time from the snapshot time to yield the elapsed time. The PerfTime member of the
PERF_OBJECT_TYPE structure contains the sample time. Use the PerfFreq member of the
PERF_OBJECT_TYPE structure to convert the time into seconds.

Element Value
Numerator CounterData

Denominator ObjectTime

Time base ObjectFreq

Calculation (D0-N0)/TB

Average function (Dx-N0)/TB

PERF_RAW_BASE Used as a base. Check that this value is greater than zero before dividing.

Element Value
Numerator N/A

Denominator N/A

Time base N/A

Calculation N/A

Average function N/A

PERF_RAW_FRACTION Instantaneous value, to be divided by the base.

Element Value
Numerator CounterData

Denominator BaseData

Time base N/A

Calculation (N0/D0)

Average function SUM(N/D)/x

PERF_SAMPLE_BASE Used as a base. Check that this value is greater than zero before dividing.

Element Value
Numerator N/A

Denominator N/A

Time base N/A

Calculation N/A

Average function N/A

PERF_SAMPLE_COUNTER A count that is sampled on each sampling interrupt. Must be divided by
the base.

Element Value
Numerator CounterData

Denominator PerfTime

Time base PerfFreq

Calculation (N1-N0)/((D1-D0)/TB)

Average function (Nx-N0)/((Dx-D0)/TB)

PERF_SAMPLE_FRACTION A count that is either 1 or 0 on each sampling interrupt.

Element Value
Numerator CounterData

Denominator BaseData

Time base N/A

Calculation (N1-N0)/(D1-D0)

 Average
function

(Nx-N0)/(Dx-D0)

Displaying Object, Instance, and Counter Names
The following example displays the index and name of each object, along with the indices and names of
its counters.

The object and counter names are stored in the registry, by index. This example creates a function,
GetNameStrings, to load the indices and names of each object and counter from the registry into an
array, so that they can be easily accessed. GetNameStrings uses the following standard registry functions
to access the data: RegOpenKey, RegCloseKey, RegQueryInfoKey, and RegQueryValueEx.

This example creates the following functions for navigating the performance data: FirstObject,
FirstInstance, FirstCounter, NextCounter, NextInstance, and NextCounter. These functions navigate the
performance data by using the offsets stored in the performance structures.

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include <string.h>

#define TOTALBYTES 8192
#define BYTEINCREMENT 1024

LPSTR lpNameStrings;
LPSTR *lpNamesArray;

/***
 * *
 * Functions used to navigate through the performance data. *
 * *
 ***/

PPERF_OBJECT_TYPE FirstObject(PPERF_DATA_BLOCK PerfData)
{
 return((PPERF_OBJECT_TYPE)((PBYTE)PerfData +
 PerfData->HeaderLength));
}

PPERF_OBJECT_TYPE NextObject(PPERF_OBJECT_TYPE PerfObj)
{
 return((PPERF_OBJECT_TYPE)((PBYTE)PerfObj +
 PerfObj->TotalByteLength));
}

PPERF_INSTANCE_DEFINITION FirstInstance(PPERF_OBJECT_TYPE PerfObj)
{
 return((PPERF_INSTANCE_DEFINITION)((PBYTE)PerfObj +
 PerfObj->DefinitionLength));
}

PPERF_INSTANCE_DEFINITION NextInstance(
 PPERF_INSTANCE_DEFINITION PerfInst)
{
 PPERF_COUNTER_BLOCK PerfCntrBlk;

 PerfCntrBlk = (PPERF_COUNTER_BLOCK)((PBYTE)PerfInst +
 PerfInst->ByteLength);

 return((PPERF_INSTANCE_DEFINITION)((PBYTE)PerfCntrBlk +
 PerfCntrBlk->ByteLength));
}

PPERF_COUNTER_DEFINITION FirstCounter(PPERF_OBJECT_TYPE PerfObj)
{
 return((PPERF_COUNTER_DEFINITION) ((PBYTE)PerfObj +
 PerfObj->HeaderLength));
}

PPERF_COUNTER_DEFINITION NextCounter(
 PPERF_COUNTER_DEFINITION PerfCntr)
{
 return((PPERF_COUNTER_DEFINITION)((PBYTE)PerfCntr +
 PerfCntr->ByteLength));
}

/***
 * *
 * Load the counter and object names from the registry to the *
 * global variable lpNamesArray. *
 * *
 ***/

void GetNameStrings()
{
 HKEY hKeyPerflib; // handle to registry key
 HKEY hKeyPerflib009; // handle to registry key
 DWORD dwMaxValueLen; // maximum size of key values
 DWORD dwBuffer; // bytes to allocate for buffers
 DWORD dwBufferSize; // size of dwBuffer
 LPSTR lpCurrentString; // pointer for enumerating data strings
 DWORD dwCounter; // current counter index

// Get the number of Counter items.

 RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Perflib",
 0,
 KEY_READ,
 &hKeyPerflib);

 dwBufferSize = sizeof(dwBuffer);

 RegQueryValueEx(hKeyPerflib,
 "Last Counter",
 NULL,
 NULL,
 (LPBYTE) &dwBuffer,
 &dwBufferSize);

 RegCloseKey(hKeyPerflib);

// Allocate memory for the names array.

 lpNamesArray = malloc((dwBuffer+1) * sizeof(LPSTR));

// Open key containing counter and object names.

 RegOpenKeyEx(HKEY_LOCAL_MACHINE,
 "SOFTWARE\\Microsoft\\Windows NT\\CurrentVersion\\Perflib\\009",
 0,
 KEY_READ,
 &hKeyPerflib009);

// Get the size of the largest value in the key (Counter or Help).

 RegQueryInfoKey(hKeyPerflib009,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 NULL,
 &dwMaxValueLen,
 NULL,
 NULL);

// Allocate memory for the counter and object names.

 dwBuffer = dwMaxValueLen + 1;

 lpNameStrings = malloc(dwBuffer * sizeof(CHAR));

// Read Counter value.

 RegQueryValueEx(hKeyPerflib009,
 "Counter",
 NULL,
 NULL,
 lpNameStrings, &dwBuffer);

// Load names into an array, by index.

 for(lpCurrentString = lpNameStrings; *lpCurrentString;
 lpCurrentString += (lstrlen(lpCurrentString)+1))
 {
 dwCounter = atol(lpCurrentString);

 lpCurrentString += (lstrlen(lpCurrentString)+1);

 lpNamesArray[dwCounter] = (LPSTR) lpCurrentString;
 }
}

/***
 * *
 * Display the indices and/or names for all performance objects, *
 * instances, and counters. *
 * *
 ***/

void main()
{
 PPERF_DATA_BLOCK PerfData = NULL;
 PPERF_OBJECT_TYPE PerfObj;
 PPERF_INSTANCE_DEFINITION PerfInst;
 PPERF_COUNTER_DEFINITION PerfCntr, CurCntr;
 PPERF_COUNTER_BLOCK PtrToCntr;
 DWORD BufferSize = TOTALBYTES;
 DWORD i, j, k;

// Get the name strings through the registry.

 GetNameStrings();

// Allocate the buffer for the performance data.

 PerfData = (PPERF_DATA_BLOCK) malloc(BufferSize);

 while(RegQueryValueEx(HKEY_PERFORMANCE_DATA,
 "Global",
 NULL,
 NULL,
 (LPBYTE) PerfData,
 &BufferSize) == ERROR_MORE_DATA)
 {
 // Get a buffer that is big enough.

 BufferSize += BYTEINCREMENT;
 PerfData = (PPERF_DATA_BLOCK) realloc(PerfData, BufferSize);
 }

// Get the first object type.

 PerfObj = FirstObject(PerfData);

// Process all objects.

 for(i=0; i < PerfData->NumObjectTypes; i++)
 {
 // Display the object by index and name.

 printf("\nObject %ld: %s\n", PerfObj->ObjectNameTitleIndex,
 lpNamesArray[PerfObj->ObjectNameTitleIndex]);

 // Get the first counter.

 PerfCntr = FirstCounter(PerfObj);

 if(PerfObj->NumInstances > 0)
 {
 // Get the first instance.

 PerfInst = FirstInstance(PerfObj);

 // Retrieve all instances.

 for(k=0; k < PerfObj->NumInstances; k++)
 {
 // Display the instance by name.

 printf("\n\tInstance %S: \n",
 (char *)((PBYTE)PerfInst + PerfInst->NameOffset));
 CurCntr = PerfCntr;

 // Retrieve all counters.

 for(j=0; j < PerfObj->NumCounters; j++)
 {
 // Display the counter by index and name.

 printf("\t\tCounter %ld: %s\n",
 CurCntr->CounterNameTitleIndex,
 lpNamesArray[CurCntr->CounterNameTitleIndex]);

 // Get the next counter.

 CurCntr = NextCounter(CurCntr);
 }

 // Get the next instance.

 PerfInst = NextInstance(PerfInst);
 }
 }
 else
 {
 // Get the counter block.

 PtrToCntr = (PPERF_COUNTER_BLOCK) ((PBYTE)PerfObj +
 PerfObj->DefinitionLength);

 // Retrieve all counters.

 for(j=0; j < PerfObj->NumCounters; j++)
 {
 // Display the counter by index and name.

 printf("\tCounter %ld: %s\n", PerfCntr-
>CounterNameTitleIndex,
 lpNamesArray[PerfCntr->CounterNameTitleIndex]);

 // Get the next counter.

 PerfCntr = NextCounter(PerfCntr);
 }
 }

 // Get the next object type.

 PerfObj = NextObject(PerfObj);
 }
}

Adding Performance Counters
Windows NT provides a mechanism for you to add performance objects and counters for your application
and other software components. Performance counters specific to your application can help you tune
performance while you develop and debug the application. After your application is complete and installed
on target systems, the counters can help system administrators adjust configurable settings for your
application.

To add an extended object and its counters, use the following steps.

1. Design the object types and counters for the application. See Object and Counter Design.
2. Create an initialization (.INI) file containing the names and descriptions of the counter objects and

counters. See Adding Counter Names and Descriptions to the Registry.
3. Create a header (.H) file containing the relative offsets at which the counter objects and counters will

be installed in the registry. See Adding Counter Names and Descriptions to the Registry.
4. Set up the necessary performance monitoring entries in the registry. This includes the following steps.

a. Create a registry key in the Services key for the application. If you do not have such a node,
create it under the following registry key: HKEY_LOCAL_MACHINE\SYSTEM\
CurrentControlSet\Services. Creating the Application's Performance Key

b. Use the lodctr utility with the .INI and .H files to install the information in the registry. This utility
succeeds only if a performance key exists in the Services key for the application. See Adding
Counter Names and Descriptions to the Registry.

5. Create a performance DLL containing a set of exported functions that provide the link between the
application and a performance monitoring application. See Creating the Performance DLL.

6. Modify the application's setup file to automate adding information to the registry (as described in step
4) and move your performance DLL to the system directory at setup.

To view an extended object, its functions, and its counter, use the extensible counter list utility
(EXCTRLST.EXE). For more information, see ExCtrLst.

Object and Counter Design
A performance object is an entity for which performance data is available. Performance counters define
the type of data that is available for a counter object. An application can provide information for multiple
performance objects, each with one or more counters.

An application can also define objects that have multiple instances. For example, a SCSI application
could use a single set of counter definitions to define a drive object with two counters, such as Bytes
Read and Bytes Written. The performance DLL for the application could report performance data for each
drive controlled by the application.

The Windows NT Performance Monitor can show some counters as rates, such as Page Faults/sec, as
well as a raw count. This gives context to the users, so they do not have to compare data from different
time intervals. However, you do not have to take this into account when you design a counter. You
increment the counter and let the monitor application do the work of converting raw counts to a rate.

The method you use to collect the data can be as simple as incrementing a counter each time a particular
routine in the application is called, or it can involve time-consuming calculations. Counters and timers
should increment and never be cleared. Counters can wrap, as long as they do not wrap twice between
snapshots. Your application can collect and store data during its normal execution, as long as it does not
affect the its performance.

For some types of data, it may be more efficient or appropriate to collect the data on demand. In this
situation, the performance DLL must communicate to the application that the data has been requested.
For data that is expensive to collect (in terms of processor time or memory usage), consider collecting
data only when the performance monitoring program requests Costly data. This allows a custom
performance monitoring program to routinely request data for all counters that are not costly. The data
can be requested only when needed. The Windows NT Performance Monitor does not collect Costly
data.

Updating the Registry
There are several updates that you must make to the registry when you install or uninstall your
performance DLL.

· Creating the application's performance key
· Adding counter names and descriptions to the registry.
· Removing counter names and descriptions from the registry.
· Creating other registry entries

Creating the Application's Performance Key
An application that supports performance counters must have a Performance key under the Services
key. The following example shows the values you should include for this key.

HKEY_LOCAL_MACHINE
 \SYSTEM
 \CurrentControlSet
 \Services
 \Application_Name
 \Performance
 Library = DLL_Name
 Open = Open_Function_Name
 Collect = Collect_Function_Name
 Close = Close_Function_Name

The Library value provides the name of the performance DLL, and the Open, Collect, and Close values
provide the names of the functions exported from the performance DLL. When a performance monitoring
application requests performance data, the system uses these values to determine which performance
DLLs to load and which DLL functions to call.

Adding Counter Names and Descriptions to the
Registry
The names and descriptions of all performance objects and their counters are stored using the registry.
You must add this information for the objects and counters you add to the system.

The following example shows the registry location where performance counter names and descriptions
are stored.

HKEY_LOCAL_MACHINE
 \SOFTWARE
 \Microsoft
 \Windows NT
 \CurrentVersion
 \Perflib
 Last Counter = highest counter index
 Last Help = highest help index
 \009
 Counter = 2 System 4 Memory ...
 Help = 3 The System object type ...
 \supported language, other than U.S. English
 Counter = ...
 Help = ...

To add names and descriptions of the objects and counters for your application, use the lodctr utility
included with Windows NT. The lodctr utility takes strings from an .INI file and adds them to the Counter
and Help values under the appropriate language subkeys. It also updates the Last Counter and Last
Help values. In addition to adding values under the PerfLib key, the lodctr utility also adds the following
value entries to the Services node for the application.

\HKEY_LOCAL_MACHINE
 \SYSTEM
Error! Bookmark not defined. \CurrentControlSet
 \Services
 \ApplicationName
 \Performance
 First Counter = lowest counter index
 First Help = lowest help index
 Last Counter = highest counter index
 Last Help = highest help index

Using lodctr
The command-line syntax for lodctr is:

lodctr MyApplication.ini

Initialization (.INI) File
The .INI file used by lodctr has the following format:

[info]
applicationname=ApplicationName
symbolfile=SymbolFile

// One key (value optional) for each language supported.

[languages]
langid=
 .
 .
 .

// Name and description for each counter or counter object
[text]
offset_langid_NAME=Name // "Counter" name string.
offset_langid_HELP=Description // "Help" description string.
 .
 .
 .

The .INI file entries are variables with the following meanings:

Variable Description
ApplicationName The name of the application found under the

CurrentControlSet\Services key.
SymbolFile An .H file containing symbolic offsets of counters.

The performance DLL also uses the offsets in this
file along with the First Counter and First Help
Registry values to determine the indexes of the
various counters and counter objects.

Langid An ID corresponding to the language subkey in
the Registry (for example, 009 for U.S. English).

Offset A symbolic constant defined in SymbolFile.
Offsets must be consecutive, even numbers
beginning with zero. These offsets determine the
order in which the counters are installed in the
Counter and Help values in the registry.

The following is an example SymbolFile.

// SYMFILE.H

#define OBJECT_1 0
#define DEVICE_COUNTER_1 2
#define DEVICE_COUNTER_2 4

The following is an example .INI file.

// begin .INI file example
[info]
applicationname=ApplicationName
symbolfile=symfile.h

[languages]
009=English
011=OtherLanguage

[text]
OBJECT_1_009_NAME=Device Name
OBJECT_1_009_HELP=Displays performance statistics on Device Name

OBJECT_1_011_NAME=Device Name in other language
OBJECT_1_011_HELP=Displays performance of Device Name in other language

DEVICE_COUNTER_1_009_NAME=Counter A
DEVICE_COUNTER_1_009_HELP=Displays the current value of Counter A
DEVICE_COUNTER_1_011_NAME=Counter A in other language
DEVICE_COUNTER_1_011_HELP=Displays the value of Counter A in other language

DEVICE_COUNTER_2_009_NAME=Counter B
DEVICE_COUNTER_2_009_HELP=Displays the current rate of Device B
DEVICE_COUNTER_2_011_NAME=Counter B in other language
DEVICE_COUNTER_2_011_HELP=Displays the rate of Device B in other language

If you run lodctr to add counters for an application and the application does not have a Services key,
lodctr returns without modifying the Perflib values.

Note The loading function of LODCTR, LoadPerfCounterTextStrings, is declared in
LOADPERF.H and exported from LOADPERF.DLL. This allows you to call this function directly from
your install program. For example

LoadPerfCounterTextStrings (MyApplication.ini, bQuietModeArg);

where MyApplication.ini is the name of your initialization file and bQuietModeArg is a Boolean
parameter that indicates whether to display output during the loading of the counter text strings.

Removing Counter Names and Descriptions from the
Registry
If you need to remove counter names and descriptions from the registry, use the unlodctr utility. This
removes the registry entries made by lodctr.

Using unlodctr
The command-line syntax for unlodctr is:

unlodctr ApplicationName

The unlodctr utility looks up the First Counter and Last Counter values in the application's
Performance key to determine the indexes of the counter objects to remove. Using these indexes, it
makes the following changes to the Perflib key.

HKEY_LOCAL_MACHINE
 \SOFTWARE
 \Microsoft
 \Windows NT
 \CurrentVersion
 \Perflib
 Last Counter = updated if changed
 Last Help = updated if changed
 \009
 Counter = application text removed
 Help = application text removed
 \supported language, other than U.S. English
 Counter = application text removed
 Help = application text removed

The unlodctr utility also removes the First Counter, First Help, Last Counter, and Last Help values
from the application's Performance key.

Note The unloading function of UNLODCTR, UnloadPerfCounterTextStrings, is declared in
LOADPERF.H and exported from LOADPERF.DLL. This allows you to call this function directly from
your uninstall program. For example

UnloadPerfCounterTextStrings (ApplicationName, bQuietModeArg);

where ApplicationName is the name of your application and bQuietModeArg is a Boolean parameter
that indicates whether to display output during the unloading of the counter text strings.

Creating Other Registry Entries
To obtain the performance data for some applications (those that return counters using the
DeviceIOControl function), it is necessary to use the CreateFile function to open the device associated
with the application. In this case, the name specified in CreateFile must also be installed in the DOS
Devices node of the registry, as shown here:

HKEY_LOCAL_MACHINE
 \SYSTEM
 \CurrentControlSet
 \Control
 \Session Manager
 \DOS Devices

Applications that manage multiple device instances with performance data for each device, must put a
Linkage key in the its Services key. The Linkage key contains an Export value whose data is a list of
the device names. For example, a system with two Etherlink cards could have the following registry
entries:

HKEY_LOCAL_MACHINE
 \SYSTEM
 \CurrentControlSet
 \Services
 \Elnkii
 \Linkage
 Export = "\Device\Elnk01" "\Device\Elnk02"
 \Performance
 Library = "ElnkStat.dll"
 Open = "OpenElnkStats"
 Collect = "GetElnkStats"
 Close = "CloseElnkStats"
 \Elnk01
 \Linkage
 \Parameters
 \Elnk02
 \Linkage
 \Parameters

When the system calls the Open function in an application's performance DLL, its argument is a string
containing the list of device names from the application's Export value, if it is present. The Open function
can then use these names to determine the devices for which to collect performance data.

Creating the Performance DLL
Your application's performance DLL defines the counter and object data structures that it uses to pass
performance data to the performance monitor application. Your DLL also provides the following exported
functions that are called by the system in response to requests for performance data.

Function Description
Open Initializes performance monitoring for the application.
Collect Reports performance data when requested.
Close Closes performance monitoring.

The prototypes for these functions, and the structures and constants used to define counters and counter
objects, are defined in the WINPERF.H file distributed with the Win32 SDK.

Communication between an application and its performance DLL differs for user-mode and privileged-
mode applications. The application's performance DLL executes in user mode. Because of this, user-
mode applications, such as print and display applications, can use any technique for interprocess
communication, such as named pipes, file mapping, or RPC. However, privileged-mode applications must
provide an IOCTL interface that returns the performance data to the performance DLL.

How the DLL Interfaces with a Performance Monitor
Application
An application retrieves performance data by specifying HKEY_PERFORMANCE_DATA in a call to the
RegQueryValueEx function. If successful, RegQueryValueEx fills a buffer of the application with the
requested performance data.

The first time an application calls RegQueryValueEx, or if the application uses the RegOpenKey function
to open HKEY_PERFORMANCE_DATA, the system calls the Open function for each application with the
correct registry entries. This gives each performance DLL an opportunity to initialize its performance data
structures. Then, if the Open function returns successfully (or if there is no Open function), the system
calls the Collect function. Subsequent calls to RegQueryValueEx cause the system to call the Collect
function.

When the application has finished collecting performance data, it specifies
HKEY_PERFORMANCE_DATA in a call to the RegCloseKey function. This causes the system to call
the Close function for each application. The performance DLLs are then unloaded.

Note It is possible for multiple programs to collect performance data at the same time. The system
calls Open and Close functions only once for each application requesting performance data. For remote
measurement, the system limits access to these routines to one thread at a time, so synchronization is
not a problem. However, for local measurement, because multiple processes may be making
simultaneous calls, you must prevent any conflicts from multiple concurrent requests for data.

The Open Function
The system calls the Open function whenever an application first connects to the registry to collect
performance data. This function performs the initialization required for the application to provide
performance data.

Use the following function prototype for your Open function.

DWORD CALLBACK OpenPerformanceData(LPWSTR lpDeviceNames);

The name OpenPerformanceData is a place-holder for an application-defined name. The lpDeviceNames
argument points to a buffer containing the Unicode strings stored in the Export value in the following
registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
ApplicationName\Linkage

The strings are REG_MULTI_SZ strings, separated by a UNICODE_NULL, and terminated by two
UNICODE_NULL characters. If this entry does not exist, lpDeviceNames should be NULL. The strings are
the names of the devices managed by this application. The Open function should call the CreateFile
function to open a handle to each device named. If CreateFile fails, the Open function should return the
error code returned by the GetLastError function; otherwise, it should return ERROR_SUCCESS.

The Open function initializes the data structures it returns to the performance monitor application. In
particular, it examines the registry to get the Counter and Help indices of the objects and counters
supported by the application. It then stores these indices in the appropriate members of the
PERF_OBJECT_TYPE and PERF_COUNTER_DEFINITION structures.

Other initialization tasks that might be performed by the Open function include the following:

· Open and map a file mapping object used by the program to store performance data. Create a mutex
to prevent the application from changing a value while the performance DLL is reading it. This is one
way to communicate performance data from the application to the performance DLL. If you are using
another form of interprocess communication, substitute the appropriate steps to initialize that
mechanism.

· Initialize event logging, if the DLL uses event logging to report errors. This is the only way for the
performance DLL to report error conditions to the user, other than through a debugger. For more
information, see Event Logging.

· Initialize the object and counter indexes. This must be done each time the performance DLL is
loaded, because the indices vary from machine to machine.

· Perform other initialization tasks necessary for the Collect function to collect performance data
efficiently.

The Open function should write any error that prevents the function from completing successfully in the
system event log.

The Collect Function
The system calls each application's Collect function whenever a performance monitor program calls the
RegQueryValueEx function to collect performance data. This function returns the application's
performance data.

Use the following function prototype for your Collect function.

DWORD WINAPI CollectPerformanceData(
 LPWSTR lpwszValue,
 LPVOID *lppData,
 LPDWORD lpcbBytes,
 LPDWORD lpcObjectTypes);

The name CollectPerformanceData is a place-holder for an application-defined name.

Argument Description
lpwszValue Points to a string specified by the performance

monitor program in a call to the RegQueryValueEx
function. The string uses one of the formats
described in Retrieving Selected Data.

LppData On input, points to a pointer to the location where
the data is to be placed. On successful exit, set
*lppData to the next byte in the buffer available for
data, such as one byte past the last byte of your
data. The data returned must be a multiple of a
DWORD in length. It must conform to the
PERF_OBJECT_TYPE structure, unless this is a
collection from a foreign computer. If foreign, any
PERF_OBJECT_TYPE structures returned must be
preceded by a PERF_DATA_BLOCK structure for
the foreign computer. If the Collect function fails for
any reason, leave *lppData unchanged.

LpcbBytes On input, points to a 32-bit value that specifies the
size, in bytes, of the lppData buffer. On successful
exit, set *lpcbBytes to the size, in bytes, of the data
written to the lppData buffer. This must be a
multiple of sizeof(DWORD) (a multiple of 4). If the
Collect function fails for any reason, set *lpcbBytes
to zero.

lpcObjectTypes On successful exit, set *lpcObjectTypes to the
number of object type definitions being returned. If
the Collect function fails for any reason, it should
set *lpcObjectTypes to zero.

If the requested data specified by lpwszValue does not correspond to any of the object indexes or foreign
computers supported by your program, leave *lppData unchanged, and set *lpcbBytes and
*lpcObjectTypes both to zero. This indicates that no data is returned. If your data collection is time-
consuming, you should only respond to specific requests and Costly requests. You should also lower the
priority of the thread collecting the data, so that it does not adversely affect system performance.

The Collect function must return one of the values shown in the following table.
Return value Description
ERROR_MORE_DATA Indicates that the size of the lppData buffer

as specified by *lpcbBytes is not large
enough to store the data to be returned. In
this case, leave *lppData unchanged, and
set *lpcbBytes and *lpcObjectTypes to zero.
No attempt is made to indicate the required
buffer size, because this may change
before the next call.

ERROR_SUCCESS Return this value in all other cases, even if
no data is returned or an error occurs. To
report errors other than insufficient buffer
size, use the system event log, but do not
flood the event log with errors on every data
collection operation.

To provide more information to the user, the Collect function should write any error that prevents the
function from completing successfully in the system event log. For more information, see Event Logging.

If the application collecting the data is running on another machine (remotely), then the extensible counter
functions are called in the context of the Winlogon process, which handles the server side of the remote
connection. This distinction is important when troubleshooting problems that only occur remotely. The
Winlogon process may access the functions using multiple threads, usually one per remote connection.
This means that the Open procedure can be called more than once. You should handle this in your code
accordingly, so that initialization tasks are not performed more than necessary. The Collect function may
also be called concurrently by multiple threads, so you should be careful how you initialize and use
temporary data. Static variables should only be used if the data is intended to be shared across threads.

The connection to the machine providing the data should be tested each time data is requested. If the
connection cannot be made, you need to return some sort of indication. One suggestion is to provide a
Status counter for the object that indicates whether a valid connection exists. When the connection does
not exist, set the Status counter and return the last set of valid data.

For foreign computer interfaces, the opening of a channel to the foreign computer must be done in the
Collect function because the computer name is not provided to the Open function. The performance DLL
should save a handle to the foreign computer to avoid reconnecting on each data collection call, which
would significantly slow down system performance.
Once you get the data for a foreign computer, construct a PERF_DATA_BLOCK as the first thing in
*lppData, so that your application can return the data. If the system you are measuring does not provide
the requested information, provide a reasonable value. You should use values from the local system for
time and counter frequency if they are not provided remotely. You may need to use the PerfTime
and .PerfFreq members of the PERF_OBJECT_TYPE structure for some counters as well.

Other things that you might do in the Collect include:

· Validate the shared memory pointer and check that the Open function had successfully completed. If
the Open function failed, it should have already logged an event, so the Collect function need not
report this error.

· Determine the data request type, as described in Retrieving Selected Data. If the request is for
Foreign data, it is ignored and the Collect function should return no data. If the request is for a specific
object or list of objects, search for its index in the list of object and counter indices. If you do not find a
match, the data from this object is not desired, so the function should return no data.

· Request ownership of the mutex for the shared memory object. Wait to get access to the data in the
shared memory block.

· Estimate the size of the data to make sure there is enough room for the data in the buffer. If the
estimated size is larger than the available size, return a status of ERROR_MORE_DATA. The system
passes this error to the thread that issued the call to RegQueryValueEx to request the data.

· Copy the performance data from the shared memory to the performance data structure to be
returned.

· When all data has been transferred from the shared memory file to the performance data buffer,
release the shared memory mutex and update the pointers and counter fields. The updating of the
pointers and counter fields is very important, to prevent an access violation from the application,
monitor, or system due to misleading buffer length information.

After the collect procedure returns successfully, the system performs the following tests to try and catch
logic errors in the collect procedure. The first test to fail will generate an event log message and, in most
cases, the data is discarded to prevent any further problems due to invalid pointers. These tests are
normally enabled though they can be disabled by changing a registry variable value as described below:

HKEY_LOCAL_MACHINE

 \Software

 \Microsoft

 \Windows NT

 \CurrentVersion

 \Perflib

 ExtCounterTestLevel = Test_Level

The Test_Level is a REG_DWORD that specifies the test level. Test level 1 requests all tests. Test level 2
requests basic tests. Test level 3 requests no tests. The default is test level 1.

The basic tests performed on the data buffer are as follows:

· Is the BytesLeft return value consistent with the returned pointer? The returned value of the BytesLeft
argument to the Collect procedure is compared to the returned buffer pointer. If all is consistent, the
BytesLeft value added to the original buffer pointer passed in to the Collect procedure should be the
same as the buffer pointer returned by the procedure. If they are not the same a warning message is
logged and the BytesLeft parameter is replaced by the value computed by finding the difference
between the buffer pointer after the function call and the buffer pointer before the function call. This is
somewhat risky, in that it assumes the BytesLeft value is assumed to be the incorrect one, when in
fact it could be that the buffer pointer is the incorrect one.

· Has the returned buffer pointer exceeded the allocated buffer extent? The actual buffer passed to the
collect function is allocated specifically for that function call by the performance library and contains a
1K-Byte Guard Page above and below the size indicated by the remaining size of the user's buffer. A
separate buffer is used to allow testing of the extensible counter DLL's returned data without
corrupting the caller's buffer. If the returned buffer pointer (the pointer to the next byte after this
object's data) exceeds the size of this buffer (not including guard pages) then the buffer is assumed to
be invalid and discarded since it is too large to be copied into the caller's buffer. This test consists of
two parts. If the buffer pointer exceeds the end of the buffer, but not the end of the guard page then a
buffer overrun error is logged. If the buffer pointer is past the end of the guard page, then a heap error
is logged since the heap that the buffer was allocated from could have been corrupted causing other
memory errors.

· Are the guard pages corrupted? The 1K byte Guard Pages above and below the block of memory
passed to the collect procedure are initialized with a data pattern before the collect function is called.
This data pattern is checked after the collect procedure returns. If any discrepancy is detected a
buffer overrun or other memory error is assumed and the buffer is discarded.

The following tests are performed only if test level 1 is used.

· Test object TotalByteLength field consistency. This test walks the object(s) returned by the
extensible counter to see if the sum of the length of all the objects returned is the same as the value
of the size of the returned buffer. Since the Collect function generally returns one or more object
structures (including the instance definitions, and counter definitions and data) the sum of each
object's length should be the same as the bytes returned. A failure here can indicate the object is not
computing the value of the TotalByteLength field correctly. This can cause an application program
using the data to fail by having it get lost in the data structures.

· Test Instance ByteLength field consistency. This test is similar to the test above. The test walks
the list of instances in each object that returns multiple instances, to see if the next object or end of
buffer follows the last instance. As above, if an inconsistency is detected, the buffer is discarded to
prevent the application program from crashing due to a lost pointer.

The Close Function
The system calls each application's Close function when an application calls the RegCloseKey function
to close the HKEY_PERFORMANCE_DATA key. This function performs any cleanup required by the
application's performance data collection mechanism. For example, the function could close device
handles opened by the CreateFile function, or close a handle to a file mapping object.

Use the following function prototype for your Close function.

DWORD WINAPI ClosePerformanceData();

The name ClosePerformanceData is a place-holder for an application-defined name.

The function should return ERROR_SUCCESS.

Error Handling in the DLL
Use event logging to record errors that occur during any of the functions in the performance DLL. Logging
error events aids in troubleshooting applications providing performance data during development and
after installation. Be careful not to log error events on every Collect call, however, because data collection
can be frequent.

The following errors are logged to the event log by the performance library if it has problems with the
Open procedure. If one of the errors listed below occurs, then the performance library makes no further
calls to this performance DLL. Instead, the DLL is unloaded and data for the object provided by the
performance DLL is not returned with the performance data.

· PERFLIB_OPEN_PROC_NOT_FOUND - Logged when the procedure name defined in the registry
could not be found in the DLL as an exported function. This usually occurs when the performance
counter DLL or the service is not installed correctly or the function name has been renamed without
updating the installation procedure.

· PERFLIB_OPEN_PROC_FAILURE - Logged when the open procedure returned an error status
other than ERROR_SUCCESS. This usually occurs when an expected error condition has occurred in
the open procedure. Should this happen, the Counter DLL should have also entered an event log
entry describing the conditions that caused the failure.

· PERFLIB_OPEN_PROC_EXCEPTION - Logged when the open procedure encounters an unhandled
exception. This is usually due to an unexpected error condition encountered by the open procedure.

Performance DLL Sample
The Win32 SDK contains a sample performance DLL. This sample is located in the directory MSTOOLS\
SAMPLES\WIN32\WINNT\PerfTool.

Performance Data Reference
The following functions and structures are supported for working with performance data.

Performance Data Functions
The following functions are supported for working with performance data.

PDH Interface
CounterPathCallback
PdhAddCounter
PdhBrowseCounters
PdhCalculateCounterFromRawValue
PdhCloseQuery
PdhCollectQueryData
PdhComputeCounterStatistics
PdhConnectMachine
PdhEnumMachines
PdhEnumObjectItems
PdhEnumObjects
PdhExpandCounterPath
PdhGetCounterInfo
PdhGetDefaultPerfCounter
PdhGetDefaultPerfObject
PdhGetFormattedCounterValue
PdhGetRawCounterValue
PdhMakeCounterPath
PdhOpenQuery
PdhParseCounterPath
PdhParseInstanceName
PdhRemoveCounter
PdhSetCounterScaleFactor
PdhValidatePath

PDH Interface (Visual Basic)
PdhAddCounter (VB)
PdhCloseQuery (VB)
PdhCollectQueryData (VB)
PdhCreateCounterPathList (VB)
PdhGetCounterPathElements (VB)
PdhGetCounterPathFromList (VB)
PdhGetDoubleCounterValue (VB)
PdhGetOneCounterPath (VB)
PdhIsGoodStatus (VB)
PdhOpenQuery (VB)
PdhRemoveCounter (VB)

Performance Data Structures
The following structures are supported for working with performance data.

PDH Interface
PDH_BROWSE_DLG_CONFIG
PDH_COUNTER_INFO
PDH_COUNTER_PATH_ELEMENTS
PDH_FMT_COUNTERVALUE
PDH_STATISTICS

Registry Interface
PERF_COUNTER_BLOCK
PERF_COUNTER_DEFINITION
PERF_DATA_BLOCK
PERF_INSTANCE_DEFINITION
PERF_OBJECT_TYPE

PDH Reference
This section describes the PDH data types, functions, and structures.

PDH Data Types
All PDH string structures are shown as "TCHAR", meaning that both Unicode and ANSI string structures
are supported. Internally, the native or preferred code path inside the PDH is the Unicode string format,
since it is built only for Windows NT. An ANSI version of each function is provided for those functions that
have string arguments. They are, however, slightly less efficient since they must convert the ANSI string
arguments to Unicode arguments before calling the Unicode version of the function.

The string data types expected are determined by the Unicode symbol when the application is compiled.
If Unicode is defined, then the Unicode or wide character strings are expected. If the symbol is undefined,
then the 8-bit or ANSI character strings are expected.

Data Type Description
HQUERY Handle to a query (HANDLE).
HCOUNTER Handle to a counter. PDH maintains the linkage

between counters and queries.
PDH_STATUS LONG PDH status value.

Unless otherwise specified, all functions return a Win32 status value of ERROR_SUCCESS if the function
completes successfully or a PDH error status value defined in the PDHMSG.H include file.

For data collection and formatting functions it is important to remember that the return value of the
function indicates the success or error of the function call and not necessarily that of the counter data.
Always check the CStatus field of the counter value returned to ensure that the data returned is valid
before you use it. If the value of the CStatus field does not indicate success, do not use the data.

PDH Functions
This section describes the Performance Data Helper functions.

CounterPathCallback       

The CounterPathCallback function processes the counter path strings read from the
szReturnPathBuffer member of the PDH_BROWSE_DLG_CONFIG structure.

PDH_STATUS __stdcall CounterPathCallback(

 IN DWORD dwArg // Pointer to a PDH_BROWSE_DLG_CONFIG structure
);

Parameters
dwArg

The user-defined DWORD value passed to the callback function by the browser. This value is the
dwCallBackArg member of the PDH_BROWSE_DLG_CONFIG structure passed to the browser by
the caller.

Remarks
The following members in the PDH_BROWSE_DLG_CONFIG structure are used to communicate with
the callback function:

szReturnPathBuffer

Contains the counter path strings currently selected by the user.
cchReturnPathLength

Contains the current maximum size of the szReturnPathBuffer member. If the callback function
reallocates a new buffer, it must also update this value.

CallBackStatus

On entry to the callback function, this member contains the status of the path buffer. On exit, the
callback function sets the status value resulting from processing.
If the buffer is too small to load the current selection, the browser will set this value to
PDH_MORE_DATA. If the browser sets this member to ERROR_SUCCESS, then the
szReturnPathBuffer member contains a valid counter path or counter path list.
If the callback function reallocates a new buffer, it should set this member to PDH_RETRY so that the
browser will try to load the buffer with the selected paths and call the callback function again.
If some other error occurred, then the callback function should return the appropriate PDH error
status value.

Return Values
If the function succeeds (processes the buffer and does not need to be called again), it returns
ERROR_SUCCESS.

If the function fails (an error occurs and the function needs to be called again to retry the processing), it
returns PDH_RETRY. This is usually the result of insufficient memory.

See Also
PdhBrowseCounters, PDH_BROWSE_DLG_CONFIG

PdhAddCounter       

The PdhAddCounter function initializes a counter structure for the specified counter in the specified
query.

PDH_STATUS PdhAddCounter(

 IN HQUERY hQuery, // handle to the query
 IN LPCTSTR szFullCounterPath, // path of the counter
 IN DWORD dwUserData, // user-defined value
 IN HCOUNTER *phCounter // pointer to the counter handle buffer
);

Parameters
hQuery

The handle of the query to which the new counter will be added.
szFullCounterPath

The fully qualified and resolved path of the counter to create. This path cannot contain wild card path
strings or characters. See PDH_COUNTER_PATH_ELEMENTS.

dwUserData

A user-defined value, typically, a pointer or index to the user's counter structure.
phCounter

A pointer to the buffer that is to receive the handle to the counter that is created.

Return Values
If the function succeeds, it returns ERROR_SUCCESS, creates a new counter, and returns the handle to
the counter in the buffer pointed to by phCounter.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_CSTATUS_BAD_COUNTERNAME

The counter name path string could not be parsed or interpreted.
PDH_CSTATUS_NO_COUNTER

The specified counter was not found.
PDH_CSTATUS_NO_COUNTERNAME

An empty counter name path string was passed in.
PDH_CSTATUS_NO_MACHINE

A machine entry could not be created.
PDH_CSTATUS_NO_OBJECT

The specified object could not be found.
PDH_FUNCTION_NOT_FOUND

The calculation function for this counter could not be determined.
PDH_INVALID_ARGUMENT

One or more arguments are invalid.
PDH_INVALID_HANDLE

The query handle is not valid.
PDH_MEMORY_ALLOCATION_FAILURE

A memory buffer could not be allocated.

See Also
PdhRemoveCounter, PDH_COUNTER_PATH_ELEMENTS

PdhBrowseCounters       

The PdhBrowseCounters function displays the counter browsing dialog box so that the user can select
the counters to be returned to the caller.

PDH_STATUS PdhBrowseCounters(

 IN PPDH_BROWSE_DLG_CONFIG pBrowseDlgData // pointer to dialog structure
);

Parameters
pBrowseDlgData

Pointer to a PDH_BROWSE_DLG_CONFIG structure that specifies the behavior of the dialog box
that receives the counter path strings.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H.

See Also
CounterPathCallback, PDH_BROWSE_DLG_CONFIG

PdhCalculateCounterFromRawValue   
   

The PdhCalculateCounterFromRawValue function computes the current value of a counter as
referenced by the hCounter parameter, using the raw counter data passed in the parameter list.

PDH_STATUS PdhCalculateCounterFromRawValue(

 IN HCOUNTER hCounter, // handle of the counter
 IN DWORD dwFormat, // format code
 IN PPDH_RAW_COUNTER rawValue1, // first raw counter
 IN PPDH_RAW_COUNTER rawValue2, // second raw counter
 IN PPDH_FMT_COUNTERVALUE fmtValue // calculated value
);

Parameters
hCounter

The handle of the counter used for the computation. This determines how the data will be computed.
dwFormat

The format code composed of the following values:
Value Meaning
PDH_FMT_DOUBLE Return the calculated value as a

double-precision floating point
real.

PDH_FMT_LARGE Return the calculated value as a
64-bit integer.

PDH_FMT_LONG Return the calculated value as a
long integer.

The value selected from the previous table can be combined using the OR operator with one of the
following scaling flags:

Flag Meaning
PDH_FMT_NOSCALE Do not apply the counter's scaling

factors in the calculation.
PDH_FMT_1000 Multiply the final value by 1000.

rawValue1

A pointer to the raw counter value used to compute the counter value. Some counters (for example,
rate counters) require two raw values for a calculation. The format of the buffer depends on the type
of counter to be processed.

rawValue2

A pointer to the raw counter value used in computations for counters that require two raw values (for
example, rate counters). This value must be the older of the two raw values.

fmtValue

A pointer to the data buffer that will receive the calculated counter value.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

Value Meaning
PDH_INVALID_ARGUMENT An argument is not correct or is

incorrectly formatted.
PDH_INVALID_HANDLE The counter handle is not valid.

See Also
PdhGetFormattedCounterValue, PdhGetRawCounterValue, PdhSetCounterScaleFactor

PdhCloseQuery       

The PdhCloseQuery function closes all counters contained in the specified query, closes all handles
related to the query, and frees all memory associated with the query.

PDH_STATUS PdhCloseQuery(

 IN HQUERY hQuery // handle of the query to close and delete.
);

Parameters
hQuery

The handle of the query to close and delete.

Return Values
If the function succeeds, it returns ERROR_SUCCESS and closes and deletes the query.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following is a
possible error value:

Value Meaning
PDH_INVALID_HANDLE The query handle is not valid.

See Also
PdhOpenQuery

PdhCollectQueryData       

The PdhCollectQueryData function collects the current raw data value for all counters in the specified
query and updates the status code of each counter.

PDH_STATUS PdhCollectQueryData(

 IN HQUERY hQuery // handle of the query
);

Parameters
hQuery

The handle of the query from which to collect data.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

Value Meaning
PDH_INVALID_HANDLE The query handle is not valid.
PDH_NO_DATA The query does not currently have

any counters.

Remarks
The PdhCollectQueryData function can succeed, but may not have collected data for all counters.
Always check the status code of each counter in the query before using the data.

See Also
PdhOpenQuery

PdhComputeCounterStatistics       

The PdhComputeCounterStatistics function computes statistics for a counter from an array of raw
values.

PDH_STATUS PdhComputeCounterStatistics(

 IN HCOUNTER hCounter, // handle of the counter
 IN DWORD dwFormat, // format code
 IN DWORD dwFirstEntry, // first entry in the array
 IN DWORD dwNumEntries, // number of entries in the array
 IN PPDH_RAW_COUNTER lpRawValueArray, // array of raw counter values
 IN PPDH_STATISTICS data // buffer for counter statistics
);

Parameters
hCounter

The handle of the counter used for the computation. This determines how the data will be computed.
dwFormat

The formatting information sent by the caller to indicate how the calculated value should be returned.
This parameter can be one of the following values:
PDH_FMT_DOUBLE

Return the calculated value as a double-precision floating point real.
PDH_FMT_LARGE

Return the calculated value as a 64-bit integer.
PDH_FMT_LONG

Return the calculated value as a long integer.

The value selected from the previous table can be combined using the OR operator with one of the
following scaling flags:

PDH_FMT_NOSCALE

Do not apply the counter's scaling factors in the calculation.
PDH_FMT_1000

Multiply the final value by 1000.
dwFirstEntry

The zero-based index of the first raw counter buffer to look at. This value must point to the oldest
entry in the buffer. The PdhComputeCounterStatistics function starts at this entry and scans
through the buffer, wrapping at the last entry back to the beginning of the buffer and up to the
dwFirstEntry-1 entry, which is assumed to be the newest or most recent data.

dwNumEntries

The number of raw counter entries in the lpRawValueArray buffer.
lpRawValueArray

A pointer to the raw counter value or values used to compute the counter value. Some counters (for
example, rate counters) require two values for a calculation. The format of the buffer is assumed to be
an array of PDH_RAW_COUNTER structures that contain dwNumEntries entries.

data

A pointer to the PDH_STATISTICS buffer to receive the counter statistics.

Return Values
If the function succeeds, it returns ERROR_SUCCESS. The function can return successfully, but the
returned data buffer can contain invalid data. Always check the CStatus member of the data buffer before
using the returned statistics.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INVALID_ARGUMENT

An argument is not correct or is incorrectly formatted.
PDH_INVALID_HANDLE

The counter handle is not valid.

See Also
PdhCalculateCounterFromRawValue, PdhGetRawCounterValue, PDH_RAW_COUNTER,
PdhSetCounterScaleFactor, PDH_STATISTICS

PdhConnectMachine       

The PdhConnectMachine function connects to the specified machine, and creates and initializes a
machine entry in the PDH DLL.

PDH_STATUS PdhConnectMachine(

 IN LPCTSTR szMachineName // machine to browse
);

Parameters
szMachineName

The name of the machine to browse.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_CSTATUS_NO_MACHINE

Unable to connect to the specified machine. Could be caused by the machine not being on, not
running Windows NT, not being connected to the network, or having the permissions set on the
registry to not allow remote connections or remote performance monitoring by the user.

PDH_MEMORY_ALLOCATION_FAILURE

Unable to allocate a dynamic memory block. Occurs when there is a serious memory shortage in the
system due to too many applications running on the system or an insufficient memory paging file.

Remarks
An application can call PdhConnectMachine to establish a connection to a remote machine at a more
convenient time than when the application opens a query and adds counters.

See Also
PdhEnumMachines

PdhEnumMachines       

The PdhEnumMachines function returns a list of the names of the machines that have been opened
previously by the PDH DLL. The machines listed include those that are currently connected and online, as
well as those that are offline or not returning performance data. For information about how to connect to a
machine, see PdhConnectMachine.

PDH_STATUS PdhEnumMachines(

 IN LPCTSR szReserved, // reserved
 IN LPTSTR mszMachineNameList, // list of connected machines
 IN LPDWORD pcchBufferLength // pointer to buffer length
);

Parameters
szReserved

Reserved. Must be NULL.
mszMachineNameList

The buffer, allocated by the calling function, to receive the multi-SZ string list of machines to which the
PDH DLL is currently connected. This parameter may be NULL if the value in the DWORD referenced
by pcchBufferLength is 0.

pcchBufferLength

A pointer to the DWORD containing the size, in characters, of the available buffer on entry and the
size of the returned buffer on exit. If the buffer size on entry is zero, then no data is returned in the
mszMachineNameList buffer (and the pointer may be NULL), and the size of the buffer required, in
characters, is returned in the DWORD pointed to by pcchBufferLength. The size returned includes
both terminating NULL characters of the multi-SZ string.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_MORE_DATA

More data is available then the current buffer can hold. Some entries may be returned in the
mszMachinenameList buffer.

PDH_INSUFFICIENT_BUFFER

The buffer provided is not large enough to contain any data.
PDH_INVALID_ARGUMENT

A required argument is invalid or a reserved argument is not NULL.

See Also
PdhConnectMachine

PdhEnumObjectItems       

The PdhEnumObjectItems function returns the available counters and instances provided by the
specified object on the specified machine.

PDH_STATUS PdhEnumObjectItems(

 IN LPCTSTR szReserved, // reserved
 IN LPCTSTR szMachineName, // machine name
 IN LPCTSTR szObjectName, // object name
 IN LPTSTR mszCounterList, // buffer for object's counters
 IN LPDWORD pcchCounterListLength, // size of counter list buffer
 IN LPTSTR mszInstanceList, // buffer for object's instances
 IN LPDWORD pcchInstanceListLength, // size of instance list buffer
 IN DWORD dwDetailLevel, // detail level
 IN DWORD dwFlags // formatting flag
);

Parameters
szReserved

Reserved. Must be NULL.
szMachineName

The name of the machine on which to list the object items. If the machine specified is not in the list of
currently connected machines, the PDH will try to connect to it.

szObjectName

The name of the object on the specified machine from which the items are to be listed.
mszCounterList

The buffer allocated by the calling function that is to receive the multi-SZ list of performance counters
provided by the specified object on the specified machine. This parameter can be NULL if the value of
the DWORD referenced by pcchCounterListLength is 0.

pcchCounterListLength

A pointer to a DWORD containing the size, in characters, of the available buffer, and which returns
the size of the buffer used. If the buffer size on entry is zero, then no data is returned in the
mszCounterList buffer, and the size of the buffer required is returned in the DWORD pointed to by
pdwCounterListLength. The size returned includes both terminating NULL characters of the multi-SZ
string.

mszInstanceList

The buffer allocated by the calling function that is to receive the multi-SZ list of the instances of the
specified object on the specified machine. This argument can be NULL if the value of the DWORD
pointed to by pcchCounterListLength is 0.

pcchInstanceListLength

A pointer to the DWORD containing the size, in characters, of the available buffer, and which returns
the size of the buffer used. If the buffer size on entry is zero, then no data is returned in the
mszInstanceList buffer, and the size of the buffer required is returned in the DWORD pointed to by
pcchInstanceListLength. The size returned includes both terminating NULL characters of the multi-SZ
string. If the specified object does not support variable instances, then the returned value will be 0. If

the specified object does support variable instances, but does not currently have any instances, then
the value returned in this DWORD will be 2, which is the size, in characters, of an empty multi-SZ list
string.

dwDetailLevel

The detail level of the performance items to return. All items that are of the specified detail level or
less will be returned.

dwFlags

Must be 0.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_MORE_DATA

There are more entries available to return than there is room in the buffer. Some entries might be
returned in the buffer, however.

PDH_INSUFFICIENT_BUFFER

The buffer provided is not large enough to contain any data.
PDH_INVALID_ARGUMENT

A required argument is invalid or a reserved argument is not NULL.
PDH_MEMORY_ALLOCATION_FAILURE

A required temporary buffer could not be allocated.
PDH_CSTATUS_NO_MACHINE

The specified machine is offline or unavailable.
PDH_CSTATUS_NO_OBJECT

The specified object could not be found on the specified machine.

See Also
PdhConnectMachine, PdhEnumObjects

PdhEnumObjects       

The PdhEnumObjects function returns a list of objects available on the specified machine.

PDH_STATUS PdhEnumObjects(

 IN LPCTSTR szReserved, // reserved
 IN LPCTSTR szMachineName, // machine name
 IN LPTSTR mszObjectList, // buffer for objects
 IN LPDWORD pcchBufferLength, // size of buffer
 IN DWORD dwDetailLevel, // detail level
 IN BOOL bRefresh // refresh flag for connected machines
);

Parameters
szReserved

Reserved. Must be NULL.
szMachineName

The name of the machine on which to list the objects. If the machine specified is not in the list of
currently connected machines, the PDH will try to connect to the machine and add it to the list.

mszObjectList

The buffer allocated by the calling function that is to receive the multi-SZ list of objects available on
the specified machine. This parameter may be NULL if the value of the DWORD pointed to by
pcchBufferLength is 0.

pcchBufferLength

A pointer to the DWORD containing the size, in characters, of the available buffer on entry and the
size of the returned buffer on exit. If the buffer size on entry is zero, then no data is returned in the
mszObjectList buffer, and that parameter may be NULL. However, the size of the buffer required, in
characters, is returned in the DWORD pointed to by pcchBufferLength. The size returned includes
both terminating NULL characters of the multi-SZ string.

dwDetailLevel

The detail level of the performance items to return. All items that are of the specified detail level or
less will be returned.

bRefresh

Indicates that a new list of objects should be obtained from the specified machine. If the machine is
not currently connected by the PDH, then this flag is ignored and the list is refreshed automatically.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_MORE_DATA

There are more entries available to return than there is room in the buffer. Some entries might be

returned in the buffer, however.
PDH_INSUFFICIENT_BUFFER

The buffer provided is not large enough to contain any data.
PDH_INVALID_ARGUMENT

A required argument is invalid or a reserved argument is not NULL.

Remarks
When you request a required buffer size, the bRefresh flag should be FALSE for all subsequent calls to
this function. Otherwise, the size might not be valid.

See Also
PdhConnectMachine, PdhEnumMachines

PdhExpandCounterPath       

The PdhExpandCounterPath function examines the specified machine (or local machine if none is
specified) for counters and instances of counters that match the wild card strings in the counter path. The
counter path format is assumed to be:

\\machine\object(parent/instance#index)\countername
and the parent, instance, index, and countername elements may contain either a valid name or a wild
card character.

PDH_STATUS PdhExpandCounterPath(

 IN LPCTSTR szWildCardPath, // counter path to expand
 IN PPTSTR mszExpandedPathList, // names that match
 IN LPDWORD pcchPathListLength // size of buffer
);

Parameters
szWildCardPath

The counter path to expand.
mszExpandedPathList

The buffer to receive the list of counter path names that match the wild card specification in the
szWildCardPath buffer.

pcchPathListLength

The size of the mszExpandedPathList buffer, in characters, on entry and the size of the buffer used by
the returned path strings on return.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H.

See Also
PdhMakeCounterPath

PdhGetCounterInfo       

The PdhGetCounterInfo function retrieves information about a counter, such as data size, counter type,
path, and user-supplied data values.

PDH_STATUS PdhGetCounterInfo(

 IN HQUERY hCounter, // handle of the counter
 IN BOOLEAN bRetrieveExplainText, // TRUE to retrieve explain text
 IN LPDWORD pdwBufferSize, // pointer to size of lpBuffer
 IN PPDH_COUNTER_INFO lpBuffer // buffer for counter information
);

Parameters
hCounter

The handle of the counter from which to retrieve the information.
bRetrieveExplainText

Determines whether explain text is retrieved. If you set this parameter to TRUE, then the explain text
for the counter is retrieved. If you set this parameter to FALSE, the field in the returned buffer is
NULL.

pdwBufferSize

A pointer to the size, in bytes, of the buffer passed in lpBuffer. If the counter requires a buffer larger
than is indicated by pdwBufferSize, then PdhGetCounterInfo will return the required buffer size in
this field. If the function succeeds, then this field will contain the size of the data returned in lpBuffer. If
the size is zero, then no data will be returned in the buffer (in fact, lpBuffer can be NULL); and the
size, in bytes, will be returned in the DWORD.

lpBuffer

A pointer to the data buffer to receive the counter information. The buffer returned is variable-length,
because the string data is appended to the end of the fixed-format portion of the structure. This is
done so that all data is returned in a single buffer allocated by the caller.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INVALID_ARGUMENT

An argument is not correct or is incorrectly formatted.
PDH_INVALID_HANDLE

The counter handle is not valid.
PDH_MORE_DATA

The buffer supplied is not large enough to receive the requested data.

See Also
PDH_COUNTER_INFO

PdhGetDefaultPerfCounter       

The PdhGetDefaultPerfCounter function retrieves the name of the default counter for the specified
object. This can be used to set the initial selection of the counter browser list/combo box.

PDH_STATUS PdhGetDefaultPerfCounter(

 IN LPCTSTR szReserved, // reserved
 IN LPCTSTR szMachineName, // machine to query
 IN LPCTSTR szObjectName, // name of object
 IN LPTSTR szDefaultCounterName, // buffer to receive counter name
 IN LPDWORD pcchBufferSize // size of counter name
);

Parameters
szReserved

Reserved. Must be NULL.
szMachineName

The name of the machine to query.
szObjectName

The name of the object in szMachineName to query.
szDefaultCounterName

A pointer to the buffer that will receive the default counter name for the specified object. This
parameter can be NULL if the value of the DWORD referenced by pcchBufferSize is 0.

pcchBufferSize

The size of the szDefaultCounterName buffer, in characters, when called, and the size of the counter
name returned on return. If the value in the DWORD pointed to by this parameter is 0, then the
required buffer size, in characters, for this object name will be returned in the DWORD and no data
will be copied to the buffer.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INSUFFICIENT_BUFFER

The buffer provided is not large enough for the available data.
PDH_INVALID_ARGUMENT

A required argument is invalid or a reserved argument is not NULL.
PDH_MEMORY_ALLOCATION_FAILURE

A required temporary buffer could not be allocated.
PDH_CSTATUS_NO_MACHINE

The specified machine is offline or unavailable.
PDH_CSTATUS_NO_COUNTERNAME

The default object name cannot be read or found.
PDH_CSTATUS_NO_OBJECT

The specified object could not be found on the specified machine.
PDH_CSTATUS_NO_COUNTER

The default counter was not found in the specified object.

See Also
PdhGetDefaultPerfObject

PdhGetDefaultPerfObject       

The PdhGetDefaultPerfObject function retrieves the name of the default performance object. The name
can be used to select the default entry in the object browser list box.

PDH_STATUS PdhGetDefaultPerfObject(

 IN LPCTSTR szReserved, // reserved
 IN LPCTSTR szMachineName, // machine to query
 IN LPTSTR szDefaultObjectName, // buffer to receive object
 IN LPDWORD pcchBufferSize // size of object name
);

Parameters
szReserved

Reserved. Must be NULL.
szMachineName

The name of the machine to query.
szDefaultObjectName

A pointer to the buffer to receive the default object name. This parameter can be NULL if the value of
the DWORD referenced by pcchBufferSize is 0.

pcchBufferSize

The size of the szDefaultObjectName buffer, in characters, on entry and the size of the returned
object name on exit. If the value in the DWORD referenced by this parameter is 0, then the required
buffer size, in characters, for this object name will be returned in the DWORD and no data will be
copied to the buffer.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INSUFFICIENT_BUFFER

The buffer provided is not large enough for the available data.
PDH_INVALID_ARGUMENT

A required argument is invalid or a reserved argument is not NULL.
PDH_MEMORY_ALLOCATION_FAILURE

A required temporary buffer could not be allocated.
PDH_CSTATUS_NO_MACHINE

The specified machine is offline or unavailable.
PDH_CSTATUS_NO_COUNTERNAME

The default object name cannot be read or found.

See Also
PdhGetDefaultPerfCounter

PdhGetFormattedCounterValue       

The PdhGetFormattedCounterValue function returns the current value of a specified counter in the
format requested by the caller.

PDH_STATUS PdhGetFormattedCounterValue(

 IN HCOUNTER hCounter, // handle of the counter
 IN DWORD dwFormat, // formatting flag
 IN LPDWORD lpdwType, // counter type
 IN PPDH_FMT_COUNTERVALUE pValue // counter value
);

Parameters
hCounter

The handle of the counter whose current value is to be formatted and returned.
dwFormat

The formatting information sent by the caller to indicate how the data should be returned. This
parameter can be one of the following values:
PDH_FMT_DOUBLE

Return data as a double-precision floating point real.
PDH_FMT_LARGE

Return data as a 64-bit integer.
PDH_FMT_LONG

Return data as a long integer.

The value selected from the previous table can be combined using the OR operator with one of the
following scaling flags:

PDH_FMT_NOSCALE

Do not apply the default scaling factor.
PDH_FMT_1000

Multiply the actual value by 1000.
lpdwType

A pointer to a DWORD buffer that will receive the counter type. The possible counter types are
described in WINPERF.H. This parameter is optional.

pValue

A pointer to the data buffer that will receive the counter value.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INVALID_ARGUMENT

An argument is not correct or is incorrectly formatted.
PDH_INVALID_DATA

The specified counter does not contain valid data or a successful status code.
PDH_INVALID_HANDLE

The counter handle is not valid.

Remarks
The data for the counter is locked (protected) for the duration of the call to
PdhGetFormattedCounterValue to prevent any changes during the processing of the call. Reading the
data (calling this function successfully) clears the data-changed flag for the counter.

See Also
PdhGetRawCounterValue, PdhSetCounterScaleFactor

PdhGetRawCounterValue       

The PdhGetRawCounterValue function returns the current raw value of the counter.

PDH_STATUS PdhGetRawCounterValue(

 IN HCOUNTER hCounter, // handle of the counter
 IN LPDWORD lpdwType, // counter type
 IN PPDH_RAW_COUNTER pValue // counter value
);

Parameters
hCounter

The handle of the counter from which to retrieve the current raw value.
lpdwType

A pointer to a DWORD buffer that will receive the counter type. The possible counter types are
described in WINPERF.H. This parameter is optional. You can pass NULL if you don't want the type
information.

pValue

A pointer to the data buffer that will receive the counter value.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INVALID_ARGUMENT

An argument is not correct or is incorrectly formatted.
PDH_INVALID_HANDLE

The counter handle is not valid.

Remarks
The data for the counter is locked (protected) for the duration of the call to PdhGetRawCounterValue to
prevent any changes during processing of the call.

See Also
PdhGetFormattedCounterValue, PdhCalculateCounterFromRawValue

PdhMakeCounterPath       

The PdhMakeCounterPath function creates a full counter path using the members specified in the
structure passed in the parameter list.

PDH_STATUS PdhMakeCounterPath(

 IN PDH_COUNTER_PATH_ELEMENTS *pCounterPathElements, // counter path elements
 IN LPTSTR szFullPathBuffer, // path string buffer
 IN LPDWORD pcchBufferSize, // size of buffer
 IN DWORD dwFlags // reserved
);

Parameters
*pCounterPathElements

Pointer to a PDH_COUNTER_PATH_ELEMENTS structure that contains the individual members that
are to make up the path. The following table indicates which members are required and which are
optional:

Member Required or Optional
LPTSTR szMachineName optional
LPTSTR szObjectName required
LPTSTR szInstanceName optional
LPTSTR szParentInstance optional
DWORD dwInstanceIndex optional

((DWORD)-1 if no index)
LPTSTR szCounterName required

If a required member is not present, then no path string will be constructed. If the szMachineName
member is NULL, then no machine name will be included in the path (a generic path will be created).
If the instance name argument is NULL, then no instance reference will be inserted into the path
string and the szParentInstance and the dwInstanceIndex members will be ignored.

szFullPathBuffer

The buffer allocated by the caller that will receive the full path string created by this function.
pcchBufferSize

A pointer to the DWORD containing the size, in bytes, of the available buffer, and which returns with
the size of the buffer used. If the buffer size on entry is zero, then no data is returned in the
szFullPathBuffer buffer, however, the size of the buffer required is returned in the DWORD. The size
returned includes the terminating NULL character of the string.

dwFlags

Reserved. Must be zero.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H.

See Also
PDH_COUNTER_PATH_ELEMENTS, PdhParseCounterPath

PdhOpenQuery       

The PdhOpenQuery function creates and initializes a unique query structure that is used to manage
collection of performance data.

PDH_STATUS PdhOpenQuery(

 IN LPVOID pReserved, // reserved
 IN DWORD dwUserData, // a value associated with this query
 IN HQUERY *phQuery // pointer to a buffer that will receive the query handle
);

Parameters
pReserved

Reserved. Must be NULL.
dwUserData

A user-defined DWORD value that is to be associated with this query. You can call
PdhGetCounterInfo to retrieve the user data value for the query in which a counter resides.

phQuery

A pointer to the buffer to receive the handle to the query that is created.

Return Values
If the function succeeds, it returns ERROR_SUCCESS, creates a new query, and returns the handle to
the query in the buffer pointed to by phQuery.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INVALID_ARGUMENT

One or more arguments are invalid.
PDH_MEMORY_ALLOCATION_FAILURE

A memory buffer could not be allocated.

See Also
PdhCloseQuery, PdhGetCounterInfo

PdhParseCounterPath       

The PdhParseCounterPath function parses the elements of the counter path and stores the results in
the structure passed by the caller.

PDH_STATUS PdhParseCounterPath(

 IN LPCTSTR szFullPathBuffer, // path string buffer
 IN PDH_COUNTER_PATH_ELEMENTS *pCounterPathElements, // counter path elements
 IN LPDWORD pdwBufferSize, // size of buffer
 IN DWORD dwFlags // reserved
);

Parameters
szFullPathBuffer

The buffer containing the counter path to parse into individual components.
pCounterPathElements

A pointer to a PDH_COUNTER_PATH_ELEMENTS structure that will receive the individual
components of the path referenced by the szFullPathBuffer parameter. The buffer space allocated for
this should be large enough for the structure and the strings that will be referenced by the members in
this structure. As this function parses the elements in the path, they are stored in the buffer after the
PDH_COUNTER_PATH_ELEMENTS structure. This allows the calling function to allocate, and
eventually free, only a single block of memory for this structure and the strings referenced by the
members of this structure, rather than having the calling function allocate the structure and the string
buffers separately.

pdwBufferSize

A pointer to the DWORD containing the size, in bytes, of the buffer referenced by
pCounterPathElements and returns with the size of the buffer used. If the buffer size on entry is zero,
then no data is returned in the pCounterPathElements buffer, however, the size of the buffer required
is returned in the DWORD referenced by this pointer.

dwFlags

Reserved. Must be zero.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INVALID_ARGUMENT

An argument is incorrect, or this function does not have the necessary access to that argument.
PDH_INSUFFICIENT_BUFFER

The buffer supplied is not large enough to accept the resulting data.
PDH_INVALID_PATH

The path is not formatted correctly and cannot be parsed.

PDH_MEMORY_ALLOCATION_FAILURE

A temporary buffer cannot be allocated.

See Also
PDH_COUNTER_PATH_ELEMENTS, PdhMakeCounterPath

PdhParseInstanceName       

The PdhParseInstanceName function parses the elements of an instance string and returns them in the
buffers supplied by the caller.

PDH_STATUS PdhParseInstanceName(

 IN LPCTSTR szInstanceString, // instance string
 IN LPTSTR szInstanceName, // parsed instance name
 IN LPDWORD pcchInstanceNameLength, // length of name
 IN LPTSTR szParentName, // name of parent index
 IN LPDWORD pcchParentNameLength, // length of parent name
 IN LPDWORD lpIndex // instance index
);

Parameters
szInstanceString

A pointer to the string containing the instance substring to parse into individual components. This
string can contain the following formats, and is less than MAX_PATH characters in length:
instance
instance#index
parent/instance
parent/instance#index

szInstanceName

A pointer to the buffer that will receive the instance name parsed from the instance string. This pointer
can be NULL if the DWORD referenced by the pcchInstanceNameLength parameter is 0.

pcchInstanceNameLength

A pointer to the DWORD that contains the length of the szInstanceName buffer. If the value of this
DWORD is 0, then the buffer size required to hold the instance name will be returned.

szParentName

A pointer to the buffer that will receive the name of the parent index if one is specified. This parameter
can be NULL if the value of the DWORD referenced by the pcchParentNameLength parameter is 0.

pcchParentNameLength

A pointer to the DWORD that contains the length of the szParentName buffer. If the value of this
DWORD is 0, then the buffer size required to hold the instance name will be returned.

lpIndex

A pointer to the DWORD that will receive the index value of the instance. If an index entry is not
present in the string, then this value will be 0. This argument can be NULL if this information is not
needed.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_INVALID_ARGUMENT

An argument is invalid or incorrect.
PDH_INSUFFICIENT_BUFFER

One or both of the string buffers supplied is not large enough for the strings to be returned.
PDH_INVALID_INSTANCE

The instance string is incorrectly formatted, exceeds MAX_PATH characters in length, or cannot be
parsed.

See Also
PdhMakeCounterPath

PdhRemoveCounter       

The PdhRemoveCounter function removes a counter from a query.

PDH_STATUS PdhRemoveCounter(

 IN HCOUNTER hCounter // handle of the counter
);

Parameters
hCounter

The handle of the counter to remove from its query.

Return Values
If the function succeeds, it returns ERROR_SUCCESS and removes the specified counter from its query.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following is a
possible error value:

PDH_INVALID_HANDLE

The counter handle is not valid.

Remarks
After you remove a counter, any references to it using the handle passed in hCounter will be invalid and
will return an error.

See Also
PdhAddCounter, PdhOpenQuery

PdhSetCounterScaleFactor       

The PdhSetCounterScaleFactor function sets the scale factor that is applied to the calculated value of
the specified counter when you request the formatted counter value. If the PDH_FMT_NOSCALE flag is
set, then this scale factor is ignored.

PDH_STATUS PdhSetCounterScaleFactor(

 IN HCOUNTER hCounter, // handle of the counter
 IN LONG lFactor // power of ten used to multiply value
);

Parameters
hCounter

The handle of the counter to receive the scale factor in lFactor.
lFactor

The power of ten by which to multiply the calculated value before returning it. The valid range of this
parameter is PDH_MIN_SCALE (-7) (the returned value is the actual value times 10-7) to
PDH_MAX_SCALE (+7) (the returned value is the actual value times 10+7). A value of zero will set
the scale to one, so that the actual value is returned.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is an error status defined in PDHMSG.H. The following are possible
error values:

PDH_INVALID_ARGUMENT

The scale value is out of range.
PDH_INVALID_HANDLE

The counter handle is not valid.

See Also
PdhCalculateCounterFromRawValue, PdhComputeCounterStatistics,
PdhGetFormattedCounterValue

PdhValidatePath       

The PdhValidatePath function validates that the specified counter is present on the machine specified in
the counter path.

PDH_STATUS PdhValidatePath(

 IN LPCTSTR szFullCounterPath // counter path to validate
);

Parameters
szFullCounterPath

The counter path to validate.

Return Values
If the function succeeds, it returns ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHMSG.H. The following are
possible error values:

PDH_CSTATUS_NO_INSTANCE

The specified instance of the performance object was not found.
PDH_CSTATUS_NO_COUNTER

The specified counter was not found in the performance object.
PDH_CSTATUS_NO_OBJECT

The specified performance object was not found on the machine.
PDH_CSTATUS_NO_MACHINE

The specified machine could not be found or connected to.
PDH_CSTATUS_BAD_COUNTERNAME

The counter path string could not be parsed.
PDH_MEMORY_ALLOCATION_FAILURE

The function is unable to allocate a required temporary buffer.

See Also
PdhMakeCounterPath

PDH Functions for Visual Basic 4.0
The functions described in this section enable the Visual Basic programmer to use Windows NT
Performance Data Helper within a Visual Basic application program.

PdhAddCounter (VB)
The Visual Basic PdhAddCounter function creates a counter entry in the specified query object, and
returns the handle for that counter upon successful completion.

PdhAddCounter(

 ByVal QueryHandle as Long,
 ByVal CounterPath as String,
 ByRef CounterHandle as Long)
 as Long

Parameters
QueryHandle

The ID of the query to assign this counter to. This must be a value returned by a successful call to
PdhOpenQuery.

CounterPath

The text string containing the name of the counter path to add to the query. The contents of this string
must be a valid counter path, as obtained from the counter browser or other source.

CounterHandle

The unique reference that identifies this counter in the query. This variable must be initialized to zero
before the function is called. It contains a valid value on return only if the function completes
successfully.

Return Values
If the function succeeds, it returns a Long integer equal to ERROR_SUCCESS and a new handle in the
CounterHandle variable.

If the function fails, the return value is a PDH error status defined in PDHDEFS.TXT. The following are
possible error values:

PDH_INVALID_ARGUMENT

One or more of the arguments is invalid or incorrect.
PDH_MEMORY_ALLOCATION_FAILURE

A memory buffer could not be allocated.
PDH_INVALID_HANDLE

The query handle is not valid.
PDH_CSTATUS_NO_COUNTER

The specified counter was not found.
PDH_CSTATUS_NO_OBJECT

The specified object could not be found.
PDH_CSTATUS_NO_MACHINE

A machine entry could not be created.
PDH_CSTATUS_BAD_COUNTERNAME

An empty counter name path string was passed in.
PDH_FUNCTION_NOT_FOUND

The calculation function for this counter could not be determined.

PdhCloseQuery (VB)
The Visual Basic PdhCloseQuery function closes the specified query and all counters related to that
query. All resources allocated for the query and its counters are freed. The handles of counters added to
this query should be deleted or zeroed and not used after the query they belong to is deleted.

PdhCloseQuery(

 ByVal QueryHandle as Long)
 as Long

Parameters
QueryHandle

The ID of the query to close and delete. Closing a query closes all the counters associated with the
query.

Return Values
If the function succeeds, it returns a Long integer equal to ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHDEFS.TXT. The following is a
possible error value:

PDH_INVALID_HANDLE

The handle is invalid.

PdhCollectQueryData (VB)
The Visual Basic PdhCollectQueryData function collects the current raw value of each counter in the
query referenced by the QueryHandle parameter and updates the internal buffers of each counter object.

PdhCollectQueryData(

 ByVal QueryHandle as Long)
 as Long

Parameters
QueryHandle

The ID of the query to update. This must be a value returned by a call to PdhOpenQuery.

Return Values
If the function succeeds, it returns a Long integer equal to ERROR_SUCCESS. Note that the function
can return successfully, but some or all counters in the query may not have been updated.

If the function fails, the return value is a PDH error status defined in PDHDEFS.TXT. The following are
possible error values:

PDH_INVALID_HANDLE

The query handle is not valid.
PDH_NO_DATA

The query does not have any counters defined yet.

PdhCreateCounterPathList (VB)
The Visual Basic PdhCreateCounterPathList function displays the performance counter browsing dialog
box, which lets the user select several performance counters. Each selected counter path must then be
read using the PdhGetCounterPathFromList function.

PdhCreateCounterPathList(

 ByVal DetailLevel as Long,
 ByVal CaptionString as String)
 as Long

Parameters
DetailLevel

One of the following values defined in PDHDEFS.TXT. The selected value indicates the types of
counters to be displayed in the dialog box:

Value Counters Displayed
PERF_DETAIL_NOVICE Only counters that the novice

user is likely to understand.
PERF_DETAIL_ADVANCED Counters that the advanced user

is likely to understand, in addition
to the novice-user counters.

PERF_DETAIL_EXPERT Counters that the expert user and
software developer is likely to
understand, in addition to the
counters for the novice and
advanced users.

PERF_DETAIL_WIZARD All counters in the system.

CaptionString

A string variable that contains the text that will be displayed in the caption bar of the dialog box.

Return Values
The function returns the number of counter paths that the user selected.

PdhGetCounterPathElements (VB)
The Visual Basic PdhGetCounterPathElements function parses a fully qualified performance counter
path string into its individual elements. Each of the string variables must be the same size (BufferSize)
and dimensioned and initialized before it is used in this function.

PdhGetCounterPathElements(

 ByVal PathString as String,
 ByVal MachineName as String,
 ByVal ObjectName as String,
 ByVal InstanceName as String,
 ByVal ParentInstance as String,
 ByVal CounterName as String,
 ByVal BufferSize as Long)
 as Long

Parameters
PathString

The counter path string that is to be broken up into its individual elements.
MachineName

The string to receive the Machine name element of the counter path specified in PathString.
ObjectName

The string to receive the Object element of the counter path specified in PathString.
InstanceName

The string to receive the Instance name element, if used, of the counter path specified in PathString.
ParentInstance

The string to receive the Parent Instance element, if used, of the counter path specified in PathString.
CounterName

The string to receive the Machine name element of the counter path specified in PathString.
BufferSize

The maximum size of each string variable used as a parameter to this function call.

Return Values
If the function succeeds, it returns a Long integer equal to ERROR_SUCCESS.

If the function fails, the return value is a PDH error status defined in PDHDEFS.TXT. The following are
possible error values:

PDH_INVALID_ARGUMENT

One or more of the string buffers is not the correct size.
PDH_INSUFFICIENT_BUFFER

One or more of the counter path elements is too large for the return buffer length.
PDH_MEMORY_ALLOCATION_FAILURE

A temporary memory buffer could not be allocated.

PdhGetCounterPathFromList (VB)
The Visual Basic PdhGetCounterPathFromList function copies the counter path referenced by the Index
parameter from a counter path list created by the user from the most recent call to the
PdhCreateCounterPathList function.

PdhGetCounterPathFromList(

 ByVal Index as Long,
 ByVal Buffer as String,
 ByVal BufferLength as Long)
 as Long

Parameters
Index

The index of the counter path to retrieve. This must be a value that is greater than or equal to 1, and
less than or equal to the value returned by the PdhCreateCounterPathList function.

Buffer

A dimensioned and initialized string that will receive the counter path that corresponds to the value of
the Index parameter.

BufferLength

The maximum number of characters that will fit in the string referenced by Buffer.

Return Values
The function returns the number of characters copied to Buffer.

PdhGetDoubleCounterValue (VB)
The Visual Basic PdhGetDoubleCounterValue function returns the current value of the specified counter
as a double-precision floating point value. You should check CounterStatus before using the returned
number, because the counter may not be valid when it is read. Call PdhIsGoodStatus to check the
CounterStatus.

PdhGetDoubleCounterValue(

 ByVal CounterHandle as Long,
 ByRef CounterStatus as Long)
 as Double

Parameters
CounterHandle

The ID of the counter whose current value is to be read.
CounterStatus

The variable in which the current status of the counter value is returned to the caller. The returned
data value is valid if and only if the value returned in CounterStatus is PDH_CSTATUS_VALID_DATA
or PDH_CSTATUS_NEW_DATA (defined in PDHDEFS.TXT). If the value returned in CounterStatus is
any other value, do not use the data.

Return Values
PdhGetDoubleCounterValue returns the double-precision floating point value of the current counter,
computed and formatted as defined by the counter type.

PdhGetOneCounterPath (VB)
The Visual Basic PdhGetOneCounterPath function displays a dialog box that lets the user browse the
available performance counters on a Windows NT system and select one counter. The counter selected is
returned in the PathString variable. The PathString variable must be dimensioned and initialized before
this function is called, and the dimensioned size must be indicated by the PathLength variable.

PdhGetOneCounterPath(

 ByVal PathString as String,
 ByVal PathLength as Long,
 ByVal DetailLevel as Long,
 ByVal CaptionString as String)
 as Long

Parameters
PathString

The initialized string variable used to receive the counter path selected by the user.
PathLength

The length of the initialized PathString.
DetailLevel

One of the following values defined in PDHDEFS.TXT. The selected value indicates the types of
counters to be displayed in the dialog box:

Value Counters Displayed
PERF_DETAIL_NOVICE Only counters that the novice

user is likely to understand.
PERF_DETAIL_ADVANCED Counters that the advanced user

is likely to understand, in addition
to the novice-user counters.

PERF_DETAIL_EXPERT Counters that the expert user and
software developer is likely to
understand, in addition to the
counters for the novice and
advanced users.

PERF_DETAIL_WIZARD All counters in the system.

CaptionString

A string variable that contains the text that will be displayed in the caption bar of the dialog box.

Return Values
The function returns the number of characters written to the PathString buffer.

PdhIsGoodStatus (VB)
The Visual Basic PdhIsGoodStatus function tests a status value to determine if it is a success or failure
code. If the status value is a successful one, then the return value will be nonzero. If it is a failure status
code, the return value will be zero.

PdhIsGoodStatus(

 ByVal StatusValue as Long)
 as Long

Parameters
StatusValue

The PDH status value returned by another PDH function that is to be tested.

Return Values
The function returns zero if the status code is a failure status code. It returns nonzero if the status code is
a success status code.

PdhOpenQuery (VB)
The Visual Basic PdhOpenQuery function creates and initializes a unique query structure that is used to
manage the collection of performance data.

PdhOpenQuery(

 ByRef QueryHandle as Long)
 as Long

Parameters
QueryHandle

A variable that is cleared (equals 0) before the function is called and, if the function is successful,
contains the unique ID of the query that is created and opened. This handle is used in the subsequent
calls to other PDH functions to identify the query.

Return Values
If the function succeeds, it returns a Long integer equal to ERROR_SUCCESS and a new handle in the
QueryHandle variable.

If the function fails, the return value is a PDH error status defined in PDHDEFS.TXT. The following are
possible error values:

PDH_INVALID_ARGUMENT

The argument is invalid or incorrect.
PDH_MEMORY_ALLOCATION_FAILURE

A temporary memory buffer could not be allocated.

PdhRemoveCounter (VB)
The Visual Basic PdhRemoveCounter function removes the counter entry identified by the
CounterHandle parameter.

PdhRemoveCounter(

 ByVal CounterHandle as Long)
 as Long

Parameters
CounterHandle

The ID of the counter returned by the PdhAddCounter function.

Return Values
If the function succeeds, it returns a Long integer equal to ERROR_SUCCESS and the counter entry is
deleted from the query.

If the function fails, the return value is a PDH error status defined in PDHDEFS.TXT. The following is a
possible error value:

Value Meaning
PDH_INVALID_HANDLE The counter handle is not valid.

PDH Structures
The following are Performance Data Helper structures.

PDH_RAW_COUNTER
The PDH_RAW_COUNTER structure returns the data as it was collected from the counter provider. No
translation, formatting, or other interpretation is performed on the data.

typedef struct _PDH_RAW_COUNTER {
 DWORD CStatus;
 FILETIME TimeStamp;
 LONGLONG FirstValue;
 LONGLONG SecondValue;
 DWORD MultiCount;
} PDH_RAW_COUNTER, *PPDH_RAW_COUNTER;

Members

CStatus

The status of the last collection operation for this counter. See Counter Status versus Function Status.
TimeStamp

The local time this data was collected.
FirstValue

The first raw counter value.
SecondValue

The second (if necessary) raw counter value.
MultiCount

The multi count (normally 1).

See Also
PdhCalculateCounterFromRawValue, PdhComputeCounterStatistics, PdhGetRawCounterValue

PDH_FMT_COUNTERVALUE       

The PDH_FMT_COUNTERVALUE structure is the most commonly used method of reading the data from
within an application. The data type of the data returned (member of the union that will have meaningful
data) is specified by the caller when requesting the data. The CStatus member provides the status of the
counter. Check this member before using the data in a calculation or display. The counter, and therefore
the data, could be invalid.

typedef struct _PDH_FMT_COUNTERVALUE {
 DWORD CStatus;
 union {
 LONG longValue;
 double doubleValue;
 LONGLONG largeValue;
 };
} PDH_FMT_COUNTERVALUE, *PPDH_FMT_COUNTERVALUE;

Members

CStatus

The status of last collection operation for this counter. See Counter Status versus Function Status.

See Also
PdhCalculateCounterFromRawValue, PdhGetFormattedCounterValue

PDH_STATISTICS       

The PDH_STATISTICS structure is used to return the statistics of the values in an array of raw counters
managed by the application program. The format of the data in the PDH_FMT_COUNTERVALUE
structure is described in the dwFormat member.

typedef struct _PDH_STATISTICS {
 DWORD dwFormat;
 DWORD count;
 PDH_FMT_COUNTERVALUE min;
 PDH_FMT_COUNTERVALUE max;
 PDH_FMT_COUNTERVALUE mean;
} PDH_STATISTICS, *PPDH_STATISTICS;

Members

dwFormat

The format of the data.
count

The number of values in the array.
min

The minimum of the values.
max

The maximum of the values.
mean

The mean of the values.

See Also
PdhComputeCounterStatistics, PDH_FMT_COUNTERVALUE

PDH_COUNTER_PATH_ELEMENTS       

The PDH_COUNTER_PATH_ELEMENTS structure contains the parsed elements of a fully qualified
counter path. The main purpose of this structure is to provide formatted text to the calling application for
display.

typedef struct _PDH_COUNTER_PATH_ELEMENTS {
 LPTSTR szMachineName;
 LPTSTR szObjectName;
 LPTSTR szInstanceName;
 LPTSTR szParentInstance;
 DWORD dwInstanceIndex;
 LPTSTR szCounterName;
} PDH_COUNTER_PATH_ELEMENTS, *PPDH_COUNTER_PATH_ELEMENTS;

Members

szMachineName

The machine name, parsed from the counter path.
szObjectName

The object name, parsed from the counter path.
szInstanceName

The instance name, parsed from counter path.
szParentInstance

The parent instance name, parsed from counter path.
dwInstanceIndex

The index of duplicate instance names.
szCounterName

The counter name.

See Also
PdhMakeCounterPath, PdhParseCounterPath

PDH_COUNTER_INFO       

The PDH_COUNTER_INFO structure contains information describing the properties of a counter. This
information also includes the counter path. The format of this buffer is to have the structure described
below followed by a variable-length buffer containing the string information referenced by the string
pointers in the structure (szFullPath, szMachineName, szObjectName, szInstanceName,
szParentInstance, szCounterName, and szExplainText).

typedef struct _PDH_COUNTER_INFO {
 DWORD dwLength;
 DWORD dwType;
 DWORD CVersion;
 DWORD CStatus;
 LONG lScale;
 LONG lDefaultScale;
 DWORD dwUserData;
 DWORD dwQueryUserData;
 LPTSTR szFullPath;
 union {
 PDH_COUNTER_PATH_ELEMENTS CounterPath;
 struct {
 LPTSTR szMachineName;
 LPTSTR szObjectName;
 LPTSTR szInstanceName;
 LPTSTR szParentInstance;
 DWORD dwInstanceIndex;
 LPTSTR szCounterName;
 };
 };
 LPTSTR szExplainText;
 DWORD DataBuffer[1];
} PDH_COUNTER_INFO, *PPDH_COUNTER_INFO;

Members

dwLength

The length of the structure, including strings.
dwType

The counter type.
CVersion

Counter version information.
CStatus

The current counter status. See Counter Status versus Function Status.
lScale

The current scale factor.
lDefaultScale

The recommended scale factor.

dwUserData

The value of the counter's User Data field.
dwQueryUserData

The value of the User Data field for the query to which the counter belongs.
szFullPath

The full counter path.
CounterPath

See PDH_COUNTER_PATH_ELEMENTS.
szExplainText

The explain text for this counter.
DataBuffer[1]

The first byte of string data appended to the structure.

See Also
PDH_COUNTER_PATH_ELEMENTS, PdhGetCounterInfo

PDH_BROWSE_DLG_CONFIG       

The PDH_BROWSE_DLG_CONFIG structure is used by the PdhBrowseCounters function to configure
the PDH Browse Counters dialog box.

typedef struct _BrowseDlgConfig {
 // Configuration flags
 DWORD bIncludeInstanceIndex:1,
 bSingleCounterPerAdd:1,
 bSingleCounterPerDialog:1,
 bLocalCountersOnly:1,
 bWildCardInstances:1,
 bHideDetailBox:1,
 bInitializePath:1,
 bReserved:25;

 HWND hWndOwner;
 LPTSTR szReserved;
 LPTSTR szReturnPathBuffer;
 DWORD cchReturnPathLength;
 CounterPathCallBack pCallBack;
 DWORD dwCallBackArg;
 PDH_STATUS CallBackStatus;
 DWORD dwDefaultDetailLevel;
 LPTSTR szDialogBoxCaption;
} PDH_BROWSE_DLG_CONFIG, *PPDH_BROWSE_DLG_CONFIG;

Members

Configuration Flags

The initial DWORD of the PDH_BROWSE_DLG_CONFIG structure contains the following
configuration flag fields. The default value for each field is FALSE.
bIncludeInstanceIndex

TRUE: The returned counter path will include the instance index for the instance.
FALSE: The returned counter path will not contain an instance number.

bSingleCounterPerAdd

TRUE: Multiple selections are not permitted. Only one counter will be returned each time the ADD
button is clicked.
FALSE: Multiple and wild card selections are permitted. Selected counters are returned as a multi-
SZ string each time the ADD button is clicked.

bSingleCounterPerDialog

TRUE: The dialog box is closed after the ADD button is clicked the first time.
FALSE: The dialog box is not closed until the CLOSE button is clicked. The ADD button can be
clicked, and counters can be added, multiple times.

bLocalCountersOnly

TRUE: The machine name will not prefix the counter path in the returned string.
FALSE: The machine name will prefix the counter path unless the user selects the Local Counters
Only radio button.

bWildCardInstances

TRUE: If wild card instances (for example, ALL) are selected, then the returned counter path will
include the wild-card syntax (for example, "*") for the instance field.
FALSE: If All Instances has been selected, all the instances currently found for that object will be
returned in a multi-SZ string.

bHideDetailBox

TRUE: Removes the Detail Level combo box from the dialog box so the user cannot change the
detail level of the counters displayed in the dialog box. The detail level will be fixed to the value of
the dwDefaultDetailLevel member.
FALSE: Displays the Detail Level combo box in the dialog box, allowing the user to change the
detail level of the counters displayed.
Note that the counters displayed will be those whose detail level is less than or equal to the current
detail level selection. Selecting a detail level of Wizard will display all counters and objects.

bInitializePath

TRUE: Selects the counter and object based on the first counter path contained in the
szReturnPathBuffer member when the dialog box is first displayed, instead of using the default
counter and object specified by the machine.
FALSE: Selects the initial counter and object using the default counter and object information
returned by the machine.

hWndOwner

The handle of the calling function's window.
szReserved

Reserved. Must be NULL.
szReturnPathBuffer

The buffer, allocated by the caller, that is used to initialize the first selection in the list boxes
(bInitializePath == TRUE) and to return the selected counters to the calling function or the callback
procedure.

cchReturnPathLength

The current maximum size, in characters, of the buffer referenced by the szReturnPathBuffer
member.

pCallBack

The address of the callback function used to update application buffers and controls when a multiple-
selection dialog box is configured.

dwCallBackArg

User-defined argument that is passed as the only argument to the callback function when it is called
by the dialog box.

CallBackStatus

Status of the dialog box prior to calling the callback function.
dwDefaultDetailLevel

The default detail level to show on startup in the Detail Level combo box. If the Detail Level combo
box is not shown, this is the detail level to use in filtering the displayed performance counters and
objects.

szDialogBoxCaption

The optional caption to be displayed in the caption bar of the PDH Browse Counters dialog box. If
this member is NULL, the caption will be Browse Performance Counters.

See Also
CounterPathCallback, PdhBrowseCounters

PERF_COUNTER_BLOCK       

   

The PERF_COUNTER_BLOCK structure contains the length, in bytes, of the performance-counter data.
This structure is followed by data for the number of counters specified in the PERF_OBJECT_TYPE
structure.

typedef struct _PERF_COUNTER_BLOCK { // pcd
 DWORD ByteLength;
} PERF_COUNTER_BLOCK;

Members

ByteLength

Specifies the length, in bytes, of this structure, including the counters that follow.

Remarks
This structure is part of the performance data provided by the RegQueryValueEx function when the
HKEY_PERFORMANCE_DATA key is used.

See Also
PERF_OBJECT_TYPE, RegQueryValueEx

PERF_COUNTER_DEFINITION   

The PERF_COUNTER_DEFINITION structure describes a performance counter. The Unicode names in
this structure must appear in a message file.

typedef struct _PERF_COUNTER_DEFINITION { // pcd
 DWORD ByteLength;
 DWORD CounterNameTitleIndex;
 LPWSTR CounterNameTitle;
 DWORD CounterHelpTitleIndex;
 LPWSTR CounterHelpTitle;
 DWORD DefaultScale;
 DWORD DetailLevel;
 DWORD CounterType;
 DWORD CounterSize;
 DWORD CounterOffset;
} PERF_COUNTER_DEFINITION;

Members

ByteLength

Contains the length, in bytes, of this structure.
CounterNameTitleIndex

Contains the index of the counter name in the title database of the registry.
CounterNameTitle

Points to the name of the counter. This member contains NULL, initially, but it can contain a pointer to
the actual string once the string is located.

CounterHelpTitleIndex

Contains the index to the counter's Help title in the title database of the registry.
CounterHelpTitle

Points to the title of Help. This member contains NULL, initially, but it can contain a pointer to the
actual string once the string is located.

DefaultScale

Specifies the power of 10 by which to scale a chart line, assuming the vertical axis is 100. If this value
is zero, the scale value is 1; if this value is 1, the scale value is 10; if this value is -1, the scale value is
.10; and so on.

DetailLevel

Specifies the level of detail for the counter. Applications use this value to control display complexity.
This member can be one of the following values:

Value Meaning
PERF_DETAIL_NOVICE The data can be understood by the

uninformed user.
PERF_DETAIL_ADVANCED The data is designed for the

advanced user.
PERF_DETAIL_EXPERT The data is designed for the expert

user.
PERF_DETAIL_WIZARD The data is designed for the system

designer.

CounterType

Specifies the type of counter. This member is some combination of the following values.
These values indicate the counter's data size:

Value Meaning
PERF_SIZE_DWORD The counter data is a doubleword.
PERF_SIZE_LARGE The counter data is a large integer.
PERF_SIZE_ZERO The counter data is a zero-length

field.
PERF_SIZE_VARIABLE_LEN The size of the counter data is in the

CounterSize member.

These values indicate the additional contents of this member:

Value Meaning
PERF_TYPE_NUMBER The counter data is a number value

but not a counter.
PERF_TYPE_COUNTER The counter data is an increasing

numeric value.
PERF_TYPE_TEXT The counter data is a text field.
PERF_TYPE_ZERO The counter data is always zero.

If PERF_TYPE_NUMBER is specified, one of these values is also specified to indicate the format of
the number:

Value Meaning
PERF_NUMBER_HEX The counter data should be displayed

as a hexadecimal value.
PERF_NUMBER_DECIMAL The counter data should be displayed

as a decimal value.
PERF_NUMBER_DEC_1000 The counter data should be divided

by 1000 and displayed as a decimal
value.

If PERF_TYPE_COUNTER is specified, one of these values is also specified to indicate the type of
counter:

Value Meaning
PERF_COUNTER_VALUE The counter value is valid without

additional calculation; that is, it
should be displayed as is.

PERF_COUNTER_RATE The counter value should be divided
by the elapsed time.

PERF_COUNTER_FRACTIONThe counter value should be divided
by the base value indicated by the
next counter if it is of type
PERF_COUNTER_BASE or by the
value of the counter subtype.

PERF_COUNTER_BASE The counter value is the base value
to use in fractions.

PERF_COUNTER_ELAPSED The counter value is a start time to be
subtracted from the current time.

PERF_COUNTER_QUEUELE
N

The performance application should
use the Queuelen counter ¾ that is,
the Queue Length Space-Time
Product formula. The next counter is
the number currently in the queue.
Multiply it by the current time (units
specified by this counter's subtype).
Add the product to the original value
of the counter. To obtain the average
queue length, divide the result of the
addition by the delta time.

PERF_COUNTER_HISTOGR
AM

The counter value begins or ends a
histogram.

If PERF_TYPE_COUNTER is specified, one of these values is also specified to indicate the subtype
of counter:

Value Meaning
PERF_TIMER_TICK The frequency of the high-resolution

performance counter should be used
as the base.

PERF_TIMER_100NS The time base units of the 100-
nanosecond timer should be used as
the base.

PERF_OBJECT_TIMER The object-timer frequency should be
used as the base unit. This value is
system-defined in this counter's
PERF_OBJECT_TYPE definition.

If PERF_TYPE_TEXT is specified, one of these values is also specified to indicate the type of text:

Value Meaning
PERF_TEXT_UNICODE The counter data contains Unicode

text.
PERF_TEXT_ASCII The counter data contains ASCII text.

These values indicate how to use the counter data in a calculation:

Value Meaning
PERF_DELTA_COUNTER The difference between the previous

counter value and the current counter
value is computed before proceeding.

PERF_DELTA_BASE The difference between the previous
base value and the current base
value is computed before proceeding.

PERF_INVERSE_COUNTER After other calculations, the counter
should be inverted before displaying
or converting to a percentage.

PERF_MULTI_COUNTER This value is a sum of counters from
several sources, the number of which
is indicated by the next counter.

These values indicate the display suffix of the counter data:

Value Meaning
PERF_DISPLAY_NO_SUFFIX There is no display suffix.
PERF_DISPLAY_PER_SEC The display suffix is '/sec'.
PERF_DISPLAY_PERCENT The display suffix is '%'.
PERF_DISPLAY_SECONDS The display suffix is 'secs'.
PERF_DISPLAY_NOSHOW The counter value should not be

displayed.

CounterSize

Specifies the counter size, in bytes.
CounterOffset

Specifies the offset from the start of the PERF_COUNTER_BLOCK structure to the first byte of this
counter.

Remarks
This structure is part of the performance data provided by the RegQueryValueEx function when the
HKEY_PERFORMANCE_DATA key is used.

See Also
RegQueryValueEx

PERF_DATA_BLOCK       

   

The PERF_DATA_BLOCK structure describes the performance data provided by RegQueryValueEx
function. The data starts with a PERF_DATA_BLOCK structure and is followed by a
PERF_OBJECT_TYPE structure and other object-specific data for each type of object monitored.

typedef struct _PERF_DATA_BLOCK { // pdb
 WCHAR Signature[4];
 DWORD LittleEndian;
 DWORD Version;
 DWORD Revision;
 DWORD TotalByteLength;
 DWORD HeaderLength;
 DWORD NumObjectTypes;
 DWORD DefaultObject;
 SYSTEMTIME SystemTime;
 LARGE_INTEGER PerfTime;
 LARGE_INTEGER PerfFreq;
 LARGE_INTEGER PerfTime100nSec;
 DWORD SystemNameLength;
 DWORD SystemNameOffset;
} PERF_DATA_BLOCK;

Members

Signature

Contains the Unicode string PERF.
LittleEndian

Contains zero if the processor is big endian and one if it is little endian.
Version

Contains the version of the performance (PERF_) structures. This member is greater than or equal to
one.

Revision

Contains the revision of the performance (PERF_) structures. This member is greater than or equal to
zero.

TotalByteLength

Contains the total length, in bytes, of the performance data.
HeaderLength

Contains the length, in bytes, of this structure.
NumObjectTypes

Contains the number of object types being monitored.
DefaultObject

Contains the object title index of the default object whose performance data is to be displayed. This
member can be -1 to indicate that no data is to be displayed.

SystemTime

Contains the time when the system is monitored. This member is in Coordinated Universal Time
(UTC) format.

PerfTime

Contains the performance-counter value, in counts, for the system being monitored.
PerfFreq

Contains the performance-counter frequency, in counts per second, for the system being monitored.
PerfTime100nSec

Contains the performance-counter value, in 100 nanosecond units, for the system being monitored.
SystemNameLength

Contains the length, in bytes, of the system name.
SystemNameOffset

Contains the offset from the beginning of this structure to the name of the system being monitored.

See Also
PERF_OBJECT_TYPE, RegQueryValueEx

PERF_INSTANCE_DEFINITION       

   

The PERF_INSTANCE_DEFINITION structure contains the instance-specific information for a block of
performance data. There is one PERF_INSTANCE_DEFINITION structure for each instance specified in
the PERF_OBJECT_TYPE structure.

typedef struct _PERF_INSTANCE_DEFINITION { // pid
 DWORD ByteLength;
 DWORD ParentObjectTitleIndex;
 DWORD ParentObjectInstance;
 DWORD UniqueID;
 DWORD NameOffset;
 DWORD NameLength;
} PERF_INSTANCE_DEFINITION;

Members

ByteLength

Specifies the length, in bytes, of this structure, including the subsequent name.
ParentObjectTitleIndex

Specifies the index of the name of the "parent" object in the title database. For example, if the object
is a thread, the parent object type is a process, or if the object is a logical drive, the parent is a
physical drive.

ParentObjectInstance

Specifies the index to an instance of the parent object type that is the parent of this instance. This
member may be zero or greater.

UniqueID

Specifies the unique identifier used instead of the instance name. This member is
PERF_NO_UNIQUE_ID if there is no such identifier.

NameOffset

Specifies the offset from the beginning of this structure to the Unicode name of this instance.
NameLength

Specifies the length, in bytes, of the instance name. This member is zero if the instance does not
have a name.

See Also
PERF_OBJECT_TYPE

PERF_OBJECT_TYPE       

   

The PERF_OBJECT_TYPE structure describes object-specific performance information. This structure is
followed by a list of PERF_COUNTER_DEFINITION structures, one for each counter defined for the type
of object.

typedef struct _PERF_OBJECT_TYPE { // pot
 DWORD TotalByteLength;
 DWORD DefinitionLength;
 DWORD HeaderLength;
 DWORD ObjectNameTitleIndex;
 LPWSTR ObjectNameTitle;
 DWORD ObjectHelpTitleIndex;
 LPWSTR ObjectHelpTitle;
 DWORD DetailLevel;
 DWORD NumCounters;
 DWORD DefaultCounter;
 DWORD NumInstances;
 DWORD CodePage;
 LARGE_INTEGER PerfTime;
 LARGE_INTEGER PerfFreq;
} PERF_OBJECT_TYPE;

Members

TotalByteLength

Contains the length, in bytes, of the object-specific data. This value includes this structure, the
PERF_COUNTER_DEFINITION structures, and the PERF_INSTANCE_DEFINITION and
PERF_COUNTER_BLOCK structures for each instance. This member specifies the offset from the
beginning of this structure to the next PERF_OBJECT_TYPE structure if one exists.

DefinitionLength

Contains the length, in bytes, of the object-specific data. This value includes this structure and the
PERF_COUNTER_DEFINITION structures for this object. This member is the offset from the
beginning of the PERF_OBJECT_TYPE structure to the first PERF_INSTANCE_DEFINITION
structure or to the PERF_COUNTER_DEFINITION structures if there is no instance data.

HeaderLength

Contains the length, in bytes, of this structure. This member is the offset to the first
PERF_COUNTER_DEFINITION structure for this object.

ObjectNameTitleIndex

Contains the index to the object's name in the title database.
ObjectNameTitle

Points to the name of the object. This member initially contains NULL, but it can contain a pointer to
the actual string once the string is located.

ObjectHelpTitleIndex

Contains the index to the object's Help title in the title database.
ObjectHelpTitle

Points to the title of Help. This member initially contains NULL, but it can contain a pointer to the
actual string once the string is located.

DetailLevel

Specifies the level of detail. Applications use this value to control display complexity. This value is the
minimum detail level of all the counters for a given object. This member can be one of the following
values:

Detail level Meaning
PERF_DETAIL_NOVICE No technical ability is required to

understand the counter data.
PERF_DETAIL_ADVANCED The counter data is provided for

advanced users.
PERF_DETAIL_EXPERT The counter data is provided for

expert users.
PERF_DETAIL_WIZARD The counter data is provided for

system designers.

NumCounters

Specifies the number of counters in each counter block. There is one counter block per instance.
DefaultCounter

Specifies the default counter whose information is to be displayed when this object is selected. This
member is typically greater than or equal to zero. However, this member may be -1 to indicate that
there is no default.

NumInstances

Specifies the number of object instances for which counters are being provided.
CodePage

Specifies the code page. This member is zero if the instance strings are in Unicode. Otherwise, this
member is the code-page identifier of the instance names.

PerfTime

Specifies the current value, in counts, of the high-resolution performance counter.
PerfFreq

Specifies the current frequency, in counts per second, of the high-resolution performance counter.

Remarks
If there is only one instance of the object type, the counter definitions are followed by a single
PERF_COUNTER_BLOCK structure. This structure is followed by data for each counter. (The
PERF_COUNTER_BLOCK structure contains the total length of the structure and the counter data that
follows it.)

If there is more than one instance of the object type, the list of counter definitions is followed by a
PERF_INSTANCE_DEFINITION structure and a PERF_COUNTER_BLOCK structure for each instance.
The PERF_INSTANCE_DEFINITION structure includes the name, the identifier, and the name of the
parent of the instance.

Following the counter data, there is a PERF_INSTANCE_DEFINITION structure and a
PERF_COUNTER_BLOCK structure for each instance specified in the PERF_DATA_BLOCK structure

that begins the performance-data area.

See Also
PERF_COUNTER_BLOCK, PERF_COUNTER_DEFINITION, PERF_INSTANCE_DEFINITION

